共查询到11条相似文献,搜索用时 78 毫秒
1.
文中针对现有去噪算法存在的问题,提出了一种基于双正交小波和边缘加权的新的图像去噪算法.该算法对图像进行基于图像移位相关性的自适应二叉分解,研究了白高斯噪声在双正交小波分解下的功率谱,并结合图像的边缘信息,对不同区域的去噪阈值以不同权重加权.实验结果表明,文中算法去噪所得图像的MSE优于小波变换全局阈值去噪,视觉效果明显优于维纳滤波去噪. 相似文献
2.
医学超声图像的增强与去噪一直是医学图像处理的重要课题,针对传统超声图像增强处理算法的不足,本文提出一种基于小波分析理论和模糊理论的超声图像增强与去噪算法,首先对医学超声图像进行对数变换,将乘性噪声转换成加性噪声;然后再对超声图像进行多尺度小波变换,得到图像的高频和低频小波系数;再对低频系数进行模糊域增强,对高频系数进行小波软阈值去噪;最后通过小波重构得到增强后的图像。实验证明,该算法能有效增强超声图像的视觉效果,去除噪声,具有一定的应用价值和意义。 相似文献
3.
4.
5.
提出了一种脉冲噪声滤波算法.首先对噪声图像进行二维小波分解,得到高频和低频子图像;其次对高频子图像序列采用改进自适应加权中值滤波进行处理,以排除水平、垂直、对角方向的噪声;然后对于低频子图像引入基于修正系数的维纳滤波进行处理,并进行小波系数重构;最后设计出一种小波域图像增强模型,通过设置调节系数,将图像分为不同区域分别进行相应比例的对比度拉伸处理,结合实验定量讨论了噪声强度与模型系数的函数关系.实验表明,该滤波算法不仅优于几类单一滤波算法,相对于某些组合滤波算法而言,也具有一定的优势. 相似文献
6.
利用小波神经网络作为噪声对消滤波器,实现了参考噪声与干扰噪声呈非线性相关条件下的噪声对消。在参考噪声与干扰噪声非线性相关时,传统的横向滤波器效果不理想,利用小波神经网络的非线性特性,可更好的解决非线性噪声条件下的噪声对消问题。计算机仿真结果证明,小波神经网络噪声对消在非线性噪声条件可有效提高信噪比增益。 相似文献
7.
基于自适应噪声估计的小波阈值语音增强 总被引:1,自引:1,他引:1
文中提出了一种基于小波阈值和自适应噪声估计方法的语音增强算法。该算法直接利用含噪语音信号估计出信噪比SNR,并通过该值调整小波阈值,从而实现了小波阈值的自适应变化。针对噪声的小波变换模值随尺度增大而减小的特性,采用了随尺度变化的小波阈值。并且改进了小波阈值函数。实验数据表明,本文算法在多种噪声环境下,均有较好的语音增强效果。并且在抑制噪声的同时,减少了语音失真。 相似文献
8.
提出了基于子空间语音增强与基于小波语音增强相结合的语音增强方法,克服了仅用子空间方法和仅用小波方法各自的弊端,并充分利用了两者的优点。实验结果表明,恢复后的语音不仅失真较小,而且更大程度上抑制了噪声,有效去除了音乐噪声。 相似文献
9.
小波阈值去噪法的深入研究 总被引:5,自引:0,他引:5
针对以往小波阈值图像去噪法在去除图像噪声的过程中会出现的去噪不彻底、噪声残留、和噪声误判的问题,对小波阈值去噪方法中两个重要因素阈值选取方式和阈值函数进行改进,以达到更好去除噪声的目的。在以往的统一阈值基础上加以修改,使阈值能随着分解尺度的变化而改变,减少小波系数和原系数之间的偏差;对传统的软阈值和硬阈值的优点予以保留,改进它们各自的缺点,产生一种新的阈值函数,使它在处理小波系数时更加灵活。通过Matlab的仿真实验和对算法的精度分析表明,用改进后的小波阈值去噪法处理加高斯噪声的lean图像可以很好的去除图像噪声,使图像的信息熵,对比度和信噪比均得到很大的提高,图像质量和视觉效果也得到提升。 相似文献
10.
11.
一种基于数学形态学与小波域增强的滤波算法 总被引:2,自引:0,他引:2
为了有效滤除图像高斯噪声,将数学形态学与小波域增强相结合,提出了一种高斯噪声新型滤波算法.该算法首先将噪声图像进行二维小波分解,得到低频和高频子图像;然后保留低频子图像不变,对各高频子图像根据其噪声分布特点分别设计出多角度、多结构逐级形态学滤波器进行滤波处理,并进行小波分解系数重构;最后对经过形态学滤波后的图像进行2层小波分解,通过设计出一种新型小波增强函数对不同幅值的小波系数进行不同程度的收缩处理,在此基础上进行分解系数重构.将自适应中值滤波与数学形态学滤波与本文算法进行比较,实验证明本文滤波算法其去噪效果优于前两种算法. 相似文献