首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The surface tension and density of Ni-S melts with Al2O3 or TiN nanoparticles are studied by the sessile drop method using a digital photographic camera and computer processing of images with special-purpose computer programs. The dependences of the surface tension and density of (Ni-S) + (Al2O3, TiN) melts on the temperature and the type of introduced refractory compound nanoparticles are determined, and the inversion of the temperature dependence of the surface tension of the Ni-S-Al2O3 system is detected. Metallographic analysis of polished sections demonstrates the presence of aluminum, nickel, and sulfur in nonmetallic inclusions at grain boundaries in the first series of experiments and the presence of titanium, nickel, and sulfur in globular nonmetallic inclusions in the second series of experiments.  相似文献   

2.
The heterophase interaction of Al2O3 refractory nanoparticles with a surfactant impurity (antimony) in the Fe–Sb (0.095 wt %)–O (0.008 wt %) system is studied. It is shown that the introduction of 0.06–0.18 wt % Al2O3 nanoparticles (25–83 nm) into a melt during isothermal holding for up to 1200 s leads to a decrease in the antimony content: the maximum degree of antimony removal is 26 rel %. The sessile drop method is used to investigate the surface tension and the density of Fe, Fe–Sb, and Fe–Sb–Al2O3 melts. The polytherms of the surface tension of these melts have a linear character, the removal of antimony from the Fe–Sb–Al2O3 melts depends on the time of melting in a vacuum induction furnace, and the experimental results obtained reveal the kinetic laws of the structure formation in the surface layers of the melts. The determined melt densities demonstrate that the introduction of antimony into the Fe–O melt causes an increase in its compression by 47 rel %. The structure of the Fe–Sb–O melt after the introduction of Al2O3 nanoparticles depends on the time of melting in a vacuum induction furnace.  相似文献   

3.
The dependence of the degree of sulfur removal on the size factors is studied during the heterophase interaction of refractory compound nanoparticles in a nickel melt. These factors are the time of holding of Al2O3 and TiN nanoparticles in a liquid metal (2?C10 min), the size and number of Al2O3 and TiN nanoparticles, the time of processing of a nickel powder with nanoparticles in a planetary mill (0?300 min), and the sulfur concentration in a Ni-(0.0775?0.1750 wt %) S melt. It is shown that the degree of sulfur removal increases as the average size of Al2O3 nanoparticles decreases from 150 to 35 nm and that of TiN nanoparticles decreases from 2 × 104 to 30 nm. The effect of the number of Al2O3 nanoparticles in a metal on the degree of sulfur removal is considered. A change in the time of processing of a powder mixture in a planetary mill is found to weakly affect the degree of sulfur removal.  相似文献   

4.
The density and surface tension of melts of ferronickel (0–100% Ni) and oxidized nickel ore are measured by the sessile-drop method, as well as the interface tension at their boundary in the temperature range 1550–1750°C. The composition of the nickel ore is as follows: 14.8 wt % Fetot, 7.1 wt % FeO, 13.2 wt % Fe2O3, 1.4 wt % CaO, 16.2 wt % MgO, 54.5 wt % SiO2, 4.8 wt % Al2O3, 1.5 wt % NiO, and 1.2 wt % Cr2O3. In the given temperature range, the density of the alloys varies from 7700 to 6900 kg/m3; the surface tension from 1770 to 1570 mJ/m2; the interface tension from 1650 to 1450 mJ/m2, the density of the oxide melt from 2250 to 1750 kg/m3; and its surface tension from 310 to 290 mJ/m2. The results are in good agreement with literature data. Functional relationships of the density, surface tension, and interphase tension with the melt temperature and composition are derived. The dependence of the alloy density on the temperature and nickel content corresponds to a first-order equation. The temperature dependence of the surface tension and interphase tension is similar, whereas the dependence on the nickel content corresponds to a second-order equation. The density and surface tension of the oxide melt depend linearly on the temperature. The results may be used to describe the formation of metallic phase when carbon monoxide is bubbled into oxide melt.  相似文献   

5.
Magnesia-chromite refractory materials are widely employed in steel production, and are considered a potential MgO source for the generation of MgO·Al2O3 spinel inclusions in steel melts. In this study, a square magnesia-chromite refractory rod was immersed into molten steel of various compositions held in an Al2O3 crucibles. As the immersion time was extended, Mg and Cr gradually dissolved from the magnesia-chromite refractory, and the Mg and Cr contents of the steel melts increased. However, it was found that the inclusions in the steel melts remained as almost pure Al2O3 because the Mg content of the steel melts was low, approximately 1 ppm. On the surface of the magnesia-chromite refractory, an MgO·Al2O3 spinel layer with a variable composition was formed, and the thickness of the MgO·Al2O3 spinel layer increased with the immersion time and the Al content of the steel melts. At the rod interface, the formed layer consisted of MgO-saturated MgO·Al2O3 spinel. The MgO content decreased along the thickness direction of the layer, and at the steel melts interface, the formed layer consisted of Al2O3-saturated MgO·Al2O3 spinel. Therefore, the low content of Mg in steel melts and the unchanged inclusions were because of the equilibrium between Al2O3-saturated MgO·Al2O3 layer and Al2O3. In addition, the effects of the Al and Cr contents of the steel melts on the dissolution of Mg from the magnesia-chromite refractory are insignificant.  相似文献   

6.
The effect of Al2O3 and MgO on the interfacial tension between the molten CaO–SiO2‐based slag and solid steel at 1773 K was studied. The interfacial tension of molten slags slightly increased with increasing Al2O3, but no significant change of interfacial tension was observed with higher MgO. Fourier transform infrared (FTIR) of as‐quenched slag samples indicated the slag structure to polymerize with Al2O3 additions, but depolymerize with MgO additions. Further detailed studies of the slag surface using X‐ray photoelectron spectroscopy (XPS) showed the fraction of free oxygen ions to decrease with higher Al2O3 but remained constant at higher MgO. The results suggested that interfacial tension decreases not only with the depolymerization of the melt, but also with an increase in the free oxygen ions at the molten slag/solid steel interface.  相似文献   

7.
Effect of the mechanical activation of Gd2O3, Dy2O3, Ho2O3, and Lu2O3 oxides on surface tension ?? and density ?? of borate melts is studied. Linear temperature dependences of ?? and ?? are found, and the temperature coefficients are calculated. The dependence of ?? on the lanthanide number in the periodic table is found and exhibits nonmonotonic behavior of the melts. The effect of mechanical activation on ?? and ?? is explained by the formation of complex lanthanide ions, which have uniform geometry in the borate melts.  相似文献   

8.
The influence of Al2O3 in the range of 10–20 mass% and TiO2 in the range of 0.55–5 mass% on the flow behavior, viscosity, density, and surface tension of molten industrial blast furnace slag with CaO/SiO2 = 1.13 is investigated using a high-temperature microscope, a rotating viscometer, and the maximum bubble pressure method. The measurement results show that Al2O3 acts as a network former in the studied CaO–SiO2–MgO–Al2O3–TiO2 slags. With an increase in the Al2O3 content from 10 to 20 mass%, the viscosity and surface tension of the slags increase and the density decreases. In contrast to Al2O3, the TiO2 acts as a surfactant and network breaker in the range of up to 15 mass%. The addition of TiO2 up to 15 mass% results in a decrease in the viscosity in the liquid-dominated region and a decrease in the surface tension of the studied slags. Therefore, the density increases with the addition of TiO2 due to increasing molar volume. The behavior of the breakpoint temperature on all the viscosity curves is in complete agreement with the behavior of the flow point temperature and crystallization temperatures of melilite and perovskite.  相似文献   

9.
As stabilizing elements added into ultra-pure ferritic stainless steels, niobium and titanium react with carbon and nitrogen to form carbonitrides and have great effects on the ratio of equiaxed zone and the grain size of solidification structure of ingots, which remarkably affect the quality of cold-rolled sheets. Combined with thermodynamic calculation, style and precipitation progress of inclusions in ultra-pure ferritic stainless steels were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The results indicate that the inclusions are mainly Ti-Al-N-O system inclusions in ultra-pure ferritic stainless steels. Al2O3 starts to precipitate firstly and then TiOx and TiN precipitates sequently. The inclusions are mainly single TiN particles and complex inclusions with Al2O3-Ti2O3 as cores and covered with TiN under the condition of 0.31% titanium addition and mainly Al2O3 under the condition of 0.01% titanium addition. A few (Nb, Ti) N particles precipitate because of no enough titanium to react with nitrogen when titanium addition is 0.01%. In addition, fine Nb(C, N) particles with size of less than 500 nm precipitate at relatively low temperature.  相似文献   

10.
Electroslag remelted (ESR) ingots of INCOLOY alloys 800 and 825 are particularly prone to macroscale slag inclusions and microscale cleanliness issues. Formation of these structures near the ingot surface can cause significant production yield losses (~10 pct) due to the necessity of extensive surface grinding. Slag inclusions from near the outer radius of the toe end of alloy 800 and 825 ingots were found to be approximately 1 to 3 mm in size and have a multiphase microstructure consisting of CaF2, CaTiO3, MgAl2O4, MgO, and some combination of Ca12Al14O32F2 and/or Ca12Al14O33. These inclusions were often surrounded by fields of 1- to 10-μm cuboidal TiN particles. A large number of TiN cuboids were observed in the ESR electrode with similar size and morphology to those observed surrounding slag inclusions in the ESR ingots, suggesting that the TiN particles are relics from the ESR electrode production process. Samples taken sequentially throughout the AOD processes showed that the TiN cuboidals that are found in ESR ingots form between tapping the AOD vessel into the AOD ladle and the casting of ESR electrodes.  相似文献   

11.
Abstract

Laboratory prepared melts of steel containing Al2O3 inclusions and aluminum containing TiB2 inclusions have been successfully filtered using multicellular extruded ceramic filters. Relatively high inclusion removal efficiencies have been achieved in both low temperature and high temperature melt systems —68 % inclusion removal efficiency in the Al-TiB2 system (1020 K) using cordierite multicellular filters and 96 % inclusion removal efficiency in the steel–Al2O3 system (1873 K). The results have been analysed using Apelian and Mutharasan's kinetic model for filtration of the metallic melts [1]. The inclusion capture kinetics and filtration characteristics of the porous media used in this investigation are discussed.  相似文献   

12.
The rate of nitrogen dissolution in CaO-Al2O3-SiO2 and CaO-Al2O3-TiO x melts was measured by 14N–15N isotope exchange reaction. The rate constant for the CaO-Al2O3-SiO2 melts at the ratio of mass pct CaO/mass pct Al2O3 = 1 increases as SiO2 content increases, whereas the rate constant for the same melts at the ratio of mass pct CaO/mass pct SiO2 = 1 increases as Al2O3 content increases. The rate constant for the CaO-Al2O3-TiO x melts at the ratio of mass pct CaO/mass pct Al2O3 = 1 decreases as the TiO x content increases. The activation energies of nitrogen dissolution in CaO-Al2O3-SiO2 melts are about 1.5 to 3 times larger than that of molten pure iron. Moreover, the rate constant of nitrogen dissolution is independent of the ratio of Ti3+/Ti4+.  相似文献   

13.
The effect of titanium oxides on the surface tension and density of an Al2O3-CaO-CaF2 melt is studied. At 1773–1923 K, an addition of 4–25 mol % TiO2 to an oxide-fluoride melt decreases the surface tension and increases the density. The complexation properties of titanium in the oxide-fluoride slags are revealed, and the size and character of the structural units are determined.  相似文献   

14.
A laboratory study was carried out to investigate non‐metallic inclusions in high strength alloying steel refined by high basicity slag. The results indicated that the inclusions were mainly of the CaO? MgO? Al2O3 system, Al2O3? MgO and MgO‐based inclusions. The steel/slag reaction time and Al2O3 content in slag had a great effect on inclusions characteristics. With the reaction time increasing from 30 to 180 minutes, inclusions experienced a transformation process: from mainly Al2O3? MgO system and MgO‐based inclusions to spherical CaO? MgO? Al2O3 system inclusions surrounded by a lower melting temperature surface layer of CaO? Al2O3. Formation and transformation mechanisms of the inclusions were given based on the results. It was also found that with Al2O3 content in slag reduced from 40% to 30%, [Mg] contents in steel melts were increased and MgO in slag reached saturation, which contributed to the formation of more MgO‐based inclusions and a more scattered inclusion composition distribution after 90 min reaction.  相似文献   

15.
Several modifications of Al2O3 were prepared. Al2O3 samples pressed to tablets were dissolved in cryolite melts at temperatures between 975 and 1090°C. The dissolution rates obtained are consistent with the consecutive occurrence of two rate laws. The dissolution rate changes at an Al2O3 content of 5 to 6 pct in the cryolite melts. The results are discussed with consideration of other experimental and theoretical work. It is concluded that the alteration of the rate law may be explained by structural changes in the melts.  相似文献   

16.
The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.  相似文献   

17.
A thermodynamic equilibrium between the Fe-16Cr melts and the CaO-Al2O3-MgO slags at 1823 K as well as the morphology of inclusions was investigated to understand the formation behavior of the MgO-Al2O3 spinel-type inclusions in ferritic stainless steel. The calculated and observed activities of magnesium in Fe-16Cr melts are qualitatively in good agreement with each other, while those of aluminum in steel melts exhibit some discrepancies with scatters. In the composition of molten steel investigated in this study, the log (X MgO/X Al 2O3) of the inclusions linearly increases by increasing the log [a Mg/a Al 2 ·a O 2 ] with the slope close to unity. In addition, the relationship between the log (X MgO/X Al 2O3) of the inclusions and the log (a MgO/a Al 2O3) of the slags exhibits the linear correlation with the slope close to unity. The compositions of the inclusions are relatively close to those of the slags, viz. the MgO-rich magnesia-spinel solid solutions were formed in the steel melts equilibrated with the highly basic slags saturated by CaO or MgO. The spinel inclusions nearly saturated by MgO were observed in the steel melts equilibrated with the slags doubly saturated by MgO and MgAl2O4. The spinel and the Al2O3-rich alumina-spinel solid solutions were formed in the steel melts equilibrated with the slags saturated by MgAl2O4 and MgAl2O4-CaAl2O4 phases, respectively. The apparent modification reaction of MgO to the magnesium aluminate inclusions in steel melts equilibrated with the highly basic slags would be constituted by the following reaction steps: (1) diffusion of aluminum from bulk to the metal/MgO interface, (2) oxidation of the aluminum to the Al3+ ions at the metal/intermediate layer interface, (3) diffusion of Al3+ ions and electrons through the intermediate layer, and (4) magnesium aluminate (MgAl2O4 spinel, for example) formation by the ionic reaction.  相似文献   

18.
Refractive indexes for the Al2O3-Na2O-SiO2 system have been measured using an ellipsometer for a wavelength of 632.8 nm over a wide temperature range (1100 to 1800 K). Two kinds of sample were used: xAl2O3-(40-x)Na2O-60SiO2 and yAl2O3-yNa2O-(100-2y)SiO2, where x ranged between 6 and 20 mol pct and y between 12.5 and 25 mol pct. In the former samples, the temperature coefficient of refractive indexes changed from negative to positive on increasing the concentration of Al2O3. In the latter samples, the refractive indexes increased monotonically with decreasing concentration of SiO2, and the temperature coefficient was always positive. It has been found that the temperature dependence of refractive indexes in these melts is determined by the coefficient of thermal expansion, which would be relevant to the degree of polymerization of the melts. In addition, the electronic polarizability of oxygen derived from the refractive indexes increased with increasing temperature in each melt. This suggests that the basicity of the alumino-silicate melts increases as temperature increases. The positive temperature coefficient of the electronic polarizability of oxygen can be attributed to an increase in the distance between cation and oxygen ion due to thermal expansion. The dependence of the electronic polarizability of oxygen on the concentration of Al2O3 has also been discussed in terms of the electronic polarizabilities of three types of oxygen contained in the melts. This article is based on a presentation given in the Mills Symposium entitled “Metals, Slags, Glasses: High Temperature Properties & Phenomena,” which took place at The Institute of Materials in London, England, on August 22–23, 2002.  相似文献   

19.
In present work, the genetic evolution behavior of inclusions in interstitial-Free steel sheets during the cold rolling processes have been investigated based on nano-indentation. The genetic evolution of inclusions in shape and position has been calculated by 2-D finite element model. The inclusions spread along the rolling direction and compress along the IF steel sheets thickness direction. The inclusion’s profiles calculated by simulation are consistent with that obtained by experiments. After multi-pass cold rolling, the inclusions can be moved a short distance toward the sheet surface. When the Al2O3 and TiN sizes are less than 30 and 20 μm, the displacements are approximately 6 and 10 μm respectively. While the diameter of Al2O3 is 100 μm, the maximum displacement is approximately 30 μm. Both the Al2O3 and TiN in the position of 1/2 of the sheet have little displacements after multi-pass rolling. On the contrary, the inclusion located at 1/8th position of the sheet, the actual displacements are more than 30 μm. The shorter the distance between the inclusion and the IF steel sheet surface, the larger the inclusion displaces. Furthermore, the relationship between inclusions and surface defects have also been discussed.  相似文献   

20.
Structure, thermodynamic, and electrical transport properties of Na3AlF6-Al2O3 and CaF2-Al2O3 melts were examined by molecular dynamics. Ionic models were constructed for Na3AlF6-Al2O3 and CaF2-Al2O3 melts at 1283 and 2000 K, respectively. It was found that in the Na3AlF6-Al2O3 melts, stable aluminum-fluorine-oxygen groups are formed. Although bonds between F and Al3+ ions in the first coordination shell are weaker than between O2− and Al3+ ions, very stable negatively charged AlF 6 3− groups are formed at low oxygen concentrations in the Na3AlF6-Al2O3. This results in migration of aluminum to the anode in an external electric field. In the CaF2-Al2O3 melts, positively charged aluminum-oxygen groups dominate. This results in migration of aluminum to the cathode at almost all Al2O3 concentrations. Therefore, in Na3AlF6-Al2O3 melts, the Al3+ ion as a component of the complex anion has a negative partial conductivity and the O2− ion has positive partial conductivity; in CaF2-Al2O3 melts, Al3+ has a positive transport number while O2− has a negative transport number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号