首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stoichiometric MgAl2O4 spinel nanoparticles were synthesized by microwave assisted combustion reaction from aluminium nitrate nanohydrate(Al(NO3)3.9H2O) and Sol-Gel prepared magnesium hydroxide(Mg(OH)2) in the presence of urea((NH2)2CO) as a fuel,in about 20 min of irradiation.X-ray diffraction(XRD) studies reveal that mi-crowave assisted combustion synthesis route yields single-phase spinel nanoparticles with larger crystalline size(around 75 nm) than other conventional heating methods.Scanning electronic microscope(SEM) images show nanoparticles with spherical shape and homogenous morphology.The surface area measurements(SBET) show crystals with 2.11 m2/g and 0.0033 mL/g pore volume.  相似文献   

2.
以硝酸铁、硝酸铜、硝酸镍和硝酸锌为原料,采用微波辅助共沉淀法制备了NiZnCu铁氧体纳米粉体,研究了微波的引入对纳米粉体制备的影响,通过XRD、TG-DTG、激光粒度分析和TEM表征了粉体的结晶性能,热性能,粒度以及粉体的形貌.研究表明,微波的引入可以明显加速晶化反应的进行,在较短时间内制得的纳米晶发育好于同温度下传统热处理方式制得的NiZnCu铁氧体纳米晶.研究表明,通过15min的微波辅助加热,可制得粒径在10nm左右的NiZnCu铁氧体纳米晶.  相似文献   

3.
Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30?nm have been observed in the case of microwave irradiation for 75?s whereas spherical particles of a size around 5-6?nm are formed for 60?s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.  相似文献   

4.
This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia, and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.  相似文献   

5.
Inspired by organic matrices in some life systems which can operate as templates for biosynthesis organic materials with uniform size and morphology, in our experiment, chitosan was combined with AG4 peptide (NPSSLFRYLPSD) to form a simple organic matrix, which was used as a template to synthesize particle size and morphology-controlling silver nanoparticles. The results of UV–vis determination and TEM observation indicated that uniform spherical silver nanoparticles with about 5 nm in size were obtained at the certain concentration of chitosan and silver ions. Hence, it is possible to control the size and morphology of silver nanoparticles at a certain extent by adjusting the concentration of chitosan and silver ions. In addition, triangle and hexagonal silver nanoparticles ranging from 20 nm to 60 nm in size appeared in different conditions. The advantage of this biomimetic synthesis of silver nanoparticles is that the process could be accomplished under mild conditions rather than stringent conditions, such as high temperature, very high pressures and a toxic environment, which usually occurs with the traditional methods for preparing metal nanoparticles.  相似文献   

6.
近年来,微放电效应的抑制研究在加速器、大功率微波器件等领域得到了广泛的关注。采用聚苯乙烯(PS)胶体晶体模板辅助磁控溅射法制备了类空心球结构的银薄膜,通过调节PS模板尺寸及溅射时间(镀银层厚度),得到具有抑制微放电效应的银薄膜。采用SEM表征银薄膜的形貌与结构,并用二次电子发射系数(SEY)测试平台表征银薄膜的SEY。结果表明,PS模板尺寸及溅射时间对银薄膜形貌及其二次电子抑制作用有显著的影响,当溅射时间为600s,模板尺寸为1 000nm时,银薄膜的SEY较小,即对二次电子的抑制作用较为显著,与初始镀银铝合金样品相比,其SEY值降低了48%。  相似文献   

7.
模板法制备纳米片状银粉的粒径与形貌控制   总被引:1,自引:1,他引:0  
模板合成法广泛应用于纳米材料的研究.表面活性剂在水溶液中可以形成多种自组装胶体结构,被认为是纳米材料制备的有效模板,对非球形贵金属纳米粉体的制备很有效.对片状银粉的制备方法进行了总结,特别是纳米片状银粉的模板法制备,探讨了模板法制备纳米片状银粉的原理与影响因素,分析了模板法制备纳米片状银粉的粒径与形貌控制关键,并对纳米片状银粉粒径与形貌控制提出了一些建议.  相似文献   

8.
In the present study, a simple mathematical model has been developed for synthesis of silver nanoparticles. The silver nanoparticles have been synthesized in ternary reverse microemulsion of cyclohexane/water/sodium dodecyl sulfate (SDS). The silver nanoparticles were produced by reaction between silver nitrate in the water droplet core of one microemulsion and hydrazine as reducing agent in the water droplet core of another microemulsion. The dynamic behavior of process was modeled on mass balance equations which were solved using the finite difference method. The kinetic parameters of the critical number size (N crit ), rate order of nucleation, and growth constants were estimated by minimizing the difference between the average particle size predicted by model and those obtained by experiments. The UV-Vis absorption spectra, transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS) were used to analyze the structure and particle size distribution of silver nanoparticles.  相似文献   

9.
《Materials Research Bulletin》2006,41(8):1407-1416
The size-controlled immobilization of silver nanoparticles onto the silica surface was carried out through one-pot process involving polyol process for the first time. Thiol groups were employed as a chemical protocol to make a binding bridge between silver nanoparticle and silica surface. The size of immobilized silver nanoparticles was controlled by reaction temperature and time at two different concentrations of silver nitrate: 1000 and 10,000 ppm. This one-pot process involving polyol process can simplify the conventional complex reaction process to control the size of immobilized metal nanoparticles. Also, this research can contribute to the immobilization of the other metals onto the inorganic supports and to the control of the size of immobilized metal particles.  相似文献   

10.
Template‐assisted synthesis is one of the most recognised techniques for fabrication of silver nanoclusters (AgNCs). However, this process is time consuming, toxic and expensive. In this study, the authors report a completely novel approach for the green and facile synthesis of AgNCs using Matricaria chamomilla, without any additional template. Fluorescent and colloidally stable AgNCs with average particle size of 2.4 nm were successfully produced. They found that carbohydrates from Matricaria chamomilla act as an ideal template to generate fluorescent AgNCs. Moreover, oxygen‐bearing functional groups were validated to be the active groups for anchoring and reducing of Ag+ ions. The novel carbohydrate coating method makes the prepared nanoclusters completely hydrophilic and stable in aqueous matrices.Inspec keywords: silver, nanofabrication, toxicology, particle size, nanomedicineOther keywords: template free synthesis, natural carbohydrates functionalised fluorescent silver nanoclusters, template‐assisted synthesis, silver nanocluster fabrication, AgNC facile synthesis, Matricaria chamomilla, fluorescent AgNC, oxygen‐bearing functional groups, Ag+ ions, hydrophilic nanoclusters, aqueous matrices, size 2.4 nm, Ag  相似文献   

11.
Synthetic methods greatly control the structural and functional characteristics of the materials. In this article, porous NiO samples were prepared in conventional-reflux and microwave assisted heating method under homogeneous precipitation conditions. The NiO samples synthesized in conventional reflux method showed flakelike morphology, whereas the sample synthesized in microwave methods showed hierarchical porous ball like surface morphology with uniform ripple-shaped pores. The NiO samples characterized using BET method were found to bear characteristic meso- and macroporosity due to differently crystallized Ni(OH)(2) precursors under various heating conditions. Thermogravimety analysis showed morphology dependent decomposition of Ni(OH)(2) precursors. The microwave synthesized porous NiO sample with unique morphology and pore size distribution showed significantly improved charge storage and electrochemical stability than the flaky NiO sample synthesized by employing conventional reflux method. The cyclic voltammetry measurements on microwave synthesized NiO sample showed considerably high capacitance and better electrochemical reversibility. The charge-discharge measurements made at a discharge current of 2 A/g showed higher rate specific capacitance (370 F/g) for the NiO sample synthesized by microwave method than the sample synthesized by reflux method (101 F/g). The impedance study illustrates lower electronic and ionic resistance of rippled-shaped porous NiO due to its superior surface properties for enhanced electrode-electrolyte contact during the Faradaic redox reactions. It has been further established from the Ragone plot that the microwave synthesized NiO sample shows higher energy and power densities than the reflux synthesized NiO sample. Broadly, this study reveals that microwave-mediated synthesis approach is significantly a better strategy for the synthesis of porous NiO suitable to electrochemical supercapacitor applications.  相似文献   

12.
In the present work, nano-NaX zeolite crystals were synthesized via microwave and conventional hydrothermal methods. The effects of reaction time, temperature and heating method on the characteristics of zeolite nanoparticles such as particle size, crystallinity, morphology, size distribution and surface area were investigated. The prepared NaX zeolite nanoparticles were characterized by the XRD, SEM, DLS, BET and XRF analysis. The results showed that both heating methods produced the NaX zeolite crystals with nano-in size. The microwave heating produced smaller zeolite nanoparticles with relatively narrower particle size distribution, required much shorter heating times and did not significantly change composition or crystallinity, compared with the conventional heating method. It was also observed that the time and temperature of microwave heating had significant effects on the prepared zeolite particles and the pure zeolite X nanoparticles or a mixture of zeolite X and A can be synthesized using the microwave heating method by control of the crystallization time and temperature.  相似文献   

13.
Silver nanoparticles are considered to apply a silver paste for electrode because of their high conductivity. However, the dispersion of silver nanoparticles in electronically conductive adhesives (ECAs) restricts them used as conductive fillers. A simple method had enabled the synthesis of silver nanoparticles by reducing silver nitrate with ethanol in the presence of poly(N-vinylpyrrolidone) (PVP). Reaction conditions, such as silver nitrate concentration, PVP concentration, reaction time, and reaction temperature, had been studied. Fine dispersion and narrow size distribution of silver nanoparticles were obtained. They were added to ECAs by re-dispersing them in ethanol while it was used as the diluent to adjust the volatility of ECAs, preventing them from the aggregation and increasing the chance to fill the gaps between silver flakes. This proposed process offers the possibility to effectively use these synthesized silver nanoparticles for improving the conductivity of ECAs.  相似文献   

14.
In the present study, the synthesis of gold and silver nanoparticles was investigated using the culture supernatant broth of the yeast Saccharomyces cerevisae. Gold nanoparticles were formed within 24 hours of gold ion coming in contact with the culture supernatant broth. In case of silver the reduction process took 48 hours. The synthesized nanoparticles were investigated by UV-Visible spectroscopy. Distinct surface plasmon peaks were observed at 540 nm and 415 nm for gold and silver nanoparticles respectively. Bio-TEM micrographs of the synthesized nanoparticles indicated that the particles were well dispersed and near spherical in shape. The size range of the gold and silver nanoparticles was around 20-100 nm and 5-20 nm respectively. XRD patterns showed the presence of three distinct peaks corresponding to gold and silver nanoparticles respectively. A pH range of 4 to 6 and 8 to 10 favored optimum synthesis of gold and silver nanoparticles respectively. The process of reduction being extra cellular could be used in future for downstream processing in an eco friendly manner.  相似文献   

15.
Polypyrrole–silver (PPy–Ag) nanocomposites with various silver contents have been synthesized via a kinetically favorable one-step chemical oxidative polymerization process. The oxidant, ammonium persulfate, was used to oxidize pyrrole monomer for growing chains of PPy. And AgNO3 was used as a precursor for metallic silver nanoparticles. The detailed characterization techniques, UV–Vis–NIR, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy (TEM), have been used to reveal electronic environment, structure, and morphology of composites as well as as-synthesized PPy. The synthesis environment prior to polymerization has also been investigated by absorption spectroscopy. The TEM images of PPy–Ag nanocomposites reveal that silver nanoparticles are deeply embedded into the polymer matrix in addition to surface adsorption. It is observed that the size distribution of inorganic nanoparticles (ca. 4–10 nm, depending on the metal ion concentrations) as well as structural morphology is altered by the initial concentrations of silver ions.  相似文献   

16.
In an endeavor to synthesize tetragonal nanocrystallites of BaTiO3 at much reduced reaction time, we explored the possibility of performing microwave assisted semi-solvothermal reaction by using Ba(OH)2 . 8H2O and amorphous titanium hydrous gel as precursors and 1,4-butanediol and water as solvent. Typically, such a microwave assisted reaction was accomplished within 2 hrs at 220 degrees C as against 12 hrs required in conventional approach. The crystallized BaTiO3 powders (microwave assisted as well as conventionally processed for reference) were characterized by X-ray diffraction, thermal analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. We have detected metastable cubic phase by XRD while locally symmetric tetragonal phase by Raman spectroscopy in case of conventional semi-solvothermal processing. On the contrary, we could detect co-existence of tetragonal and cubic phases by XRD and only tetragonal phase by Raman spectroscopy in case of microwave assisted semi-solvothermal processing. The TEM analysis indicates typical particle size distribution in the range of approximately 20 to 80 nm for conventionally processed powder while that in the range of approximately 20 to 50 nm for microwave processed powder. HRTEM images evince the distortion from an ideal cubic structure in case of microwave processed powder which can be correlated with anisotropic lattice contraction during the microwave induced heating. AFM analysis exhibited relatively less aggregation of nanoparticles for microwave assisted process.  相似文献   

17.
Green synthesis of nanoparticles is regarded as a safe and non-toxic process whereas conventional synthesis using chemical methods produces toxic substance. This study provides a novel insight for enzymatic synthesis method of silver nanoparticles using purple acid phosphatase, isolated from Limonia acidissima (wood apple) as a new source and used in the synthesis of silver nanoparticles. Stable silver nanoparticles were produced by sonochemical method using apoenzyme as a stabilising and capping agent and were characterised by various physicochemical techniques like UV–Visible spectroscopy, Fourier-transform infrared, X-ray diffraction and transmission electron microscopy. X-ray study shows that nanoparticles are composed of silver and silver oxide. The synthesised nanoparticles exhibited excellent antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.  相似文献   

18.
The design, synthesis and characterization of biologically synthesized nanomaterials have become an area of significant interest. In this paper, we report the extracellular synthesis of gold and silver nanoparticles using Emblica Officinalis (amla, Indian Gooseberry) fruit extract as the reducing agent to synthesize Ag and Au nanoparticles, their subsequent phase transfer to an organic solution and the transmetallation reaction of hydrophobized silver nanoparticles with hydrophobized chloroaurate ions. On treating aqueous silver sulfate and chloroauric acid solutions with Emblica Officinalis fruit extract, rapid reduction of the silver and chloroaurate ions is observed leading to the formation of highly stable silver and gold nanoparticles in solution. Transmission Electron Microscopy analysis of the silver and gold nanoparticles indicated that they ranged in size from 10 to 20 nm and 15 to 25 nm respectively. Ag and Au nanoparticles thus synthesized were then phase transferred into an organic solution using a cationic surfactant octadecylamine. Transmetallation reaction between hydrophobized silver nanoparticles and hydrophobized chloroaurate ions in chloroform resulted in the formation of gold nanoparticles.  相似文献   

19.
In this review, the progress made in the last ten years concerning the synthesis of porous carbon materials is summarized. Porous carbon materials with various pore sizes and pore structures have been synthesized using several different routes. Microporous activated carbons have been synthesized through the activation process. Ordered microporous carbon materials have been synthesized using zeolites as templates. Mesoporous carbons with a disordered pore structure have been synthesized using various methods, including catalytic activation using metal species, carbonization of polymer/polymer blends, carbonization of organic aerogels, and template synthesis using silica nanoparticles. Ordered mesoporous carbons with various pore structures have been synthesized using mesoporous silica materials such as MCM‐48, HMS, SBA‐15, MCF, and MSU‐X as templates. Ordered mesoporous carbons with graphitic pore walls have been synthesized using soft‐carbon sources that can be converted to highly ordered graphite at high temperature. Hierarchically ordered mesoporous carbon materials have been synthesized using various designed silica templates. Some of these mesoporous carbon materials have successfully been used as adsorbents for bulky pollutants, as electrodes for supercapacitors and fuel cells, and as hosts for enzyme immobilization. Ordered macroporous carbon materials have been synthesized using colloidal crystals as templates. One‐dimensional carbon nanostructured materials have been fabricated using anodic aluminum oxide (AAO) as a template.  相似文献   

20.
周建华  查向华 《材料导报》2017,31(19):43-50
纳米银/聚合物复合材料结合了纳米银优异的物理化学性能和聚合物的易加工和成膜性的特点,被广泛应用于抗菌、催化和光电等领域。原位法具有工艺简单、成本低、可形成单分散的纳米粒子等优点,被广泛用于制备纳米银/聚合物复合材料。主要综述了纳米银/聚合物复合材料的原位制备方法,主要包括原位生成法、原位聚合法、双原位合成法,并提出了纳米银/聚合物复合材料的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号