首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
为了发展一个新的生物活性物质利用纤维素资源,采用高碘酸钠(NalO4)对微晶纤维素(MCC)进行选择性氧化,又与亚硫酸氢钠(NaHSO3)进行磺化反应,得到了双醛纤维素硫酸酯(OSC)。通过红外光谱(FTIR)分析手段对产品结构进行了表征。并考察了工艺参数对DAC醛基含量和OSC取代度的影响,得出了各合成阶段的关键工艺参数——时间、温度、pH值和反应物配比的最佳控制值。结果表明:当反应物配比为n(NaHSO3)∶n(DAC)=2∶1,产品合成温度为22℃,合成时间为2 h时,所得产品磺酸基取代度最高,并具有明显的表面活性。  相似文献   

2.
丁基磺酸纤维素醚减水剂的制备及其减水机理   总被引:1,自引:0,他引:1  
以纤维素棉桨粕和1,4-丁烷磺内酯(BS)为原料合成了丁基磺酸纤维素醚减水剂(SBC)。采用红外光谱(FTIR)、13C固体碳谱(13 CP MAS)、扫描电镜(SEM)、X衍射(XRD)等对产品结构进行了表征,并考察了纤维素聚合度、原料配比、反应温度、反应时间等合成工艺参数对SBC减水剂减水性能的影响。从丁基磺酸纤维素醚减水剂水溶液的表面张力和水-SBC-水泥体系的ζ电位等方面研究了SBC减水剂的减水机理。研究结果表明:SBC减水剂几乎不改变水的表面张力,它们在气-液界面的取向能力很小,对混凝土没有引气作用;SBC减水剂在水泥颗粒表面吸附的结果,使水泥颗粒表面带有相同电荷而相互排斥造成水泥颗粒的分散,从而出现减水效果。  相似文献   

3.
以工业甲基萘为原料,通过磺化、水解、缩合与中和反应合成了甲基萘磺酸甲醛缩合物(MNSF),考察了反应工艺参数对产物作为混凝土减水剂的分散性能的影响.结果表明,合成MNSF最优工艺为:n(甲基萘)n∶(浓硫酸)n∶(水解加水量)n∶(甲醛)∶n(缩合加水量)=11∶.25(∶1.25~1.5)0∶.924∶.6;磺化反应温度160~165℃,时间3~3.5 h;水解反应温度110~120℃,时间15~30 min;缩合反应的加醛量与温度是该段影响产品分散性能的主要因素,缩合反应温度110℃,时间4 h;水解前后酸度应控制在30%左右.MNSF在掺量为水泥质量的0.5%时,砂浆减水率达到16%,比萘磺酸甲醛缩合物钠盐(FDN)高4%,抗折和抗压强度与FDN相近.  相似文献   

4.
以工业甲基萘为原料,通过磺化、水解、缩合与中和反应合成了甲基萘磺酸甲醛缩合物(MNSF),考察了反应工艺参数对产物作为混凝土减水剂的分散性能的影响.结果表明,合成MNSF最优工艺为:n(甲基萘)n∶(浓硫酸)n∶(水解加水量)n∶(甲醛)∶n(缩合加水量)=11∶.25(∶1.25~1.5)0∶.924∶.6;磺化反应温度160~165℃,时间3~3.5 h;水解反应温度110~120℃,时间15~30 min;缩合反应的加醛量与温度是该段影响产品分散性能的主要因素,缩合反应温度110℃,时间4 h;水解前后酸度应控制在30%左右.MNSF在掺量为水泥质量的0.5%时,砂浆减水率达到16%,比萘磺酸甲醛缩合物钠盐(FDN)高4%,抗折和抗压强度与FDN相近.  相似文献   

5.
采用非均相催化酯化法合成醋酸丙酸纤维素(CAP),在乙酸/乙酸酐/丙酸酐体系中,以浓硫酸为催化剂合成出一系列不同取代度的CAP,并FT IR分析证实了酯化产物的生成。研究酯化剂组成(不同比例的乙酸酐/丙酸酐)、原料聚合度、催化剂用量和反应时间对CAP粘度及热性能的影响以及产品CAP的酰基含量对溶解性的影响。得到较稳定热性能CAP的反应条件为:采用聚合度DP=1926的木纤维素,催化剂用量10%(wt,相当于纤维素),40℃酯化反应3h。  相似文献   

6.
催化合成高聚合度萘磺酸盐缩合物   总被引:4,自引:0,他引:4  
许宁  李志富  吴希坤 《精细化工》2003,20(9):538-540
用工业萘、硫酸、甲醛为原料,合成出聚合度为16~21的β 萘磺酸盐甲醛缩合物。确立了n(甲醛)/n(萘)=0 88~0 90,反应温度(110±5)℃,反应时间3h,催化剂MA用量为萘质量的1%的最佳工艺条件。产品性能测试表明,加入质量分数为0 8%的产品,混凝土减水率可达21%以上,抗压强度可提高60%以上。  相似文献   

7.
分别用HCl和H2SO4处理从棉纤维中提取的纤维素,100℃下回流水解30~60 min得到微晶纤维素(MCC),并对其进行醋酸酯化表面改性.采用X-射线衍射(XRD)、热重分析(TG)、红外光谱(IR)技术研究酸处理对MCC的聚合度、结晶度和热稳定性的影响,探讨了改性方法对产物性能的影响.结果表明,纤维素微晶化后仍保持原来的晶型以及晶区和非晶区共存的微细结构,结晶度不能达到100%.扫描电子显微镜(SEM)测试结果表明,不同酸处理后所得产物的形态和热性能有所不同,MCC的最高适用温度不宜超过270℃.适宜的醋酸酯化改性条件为:硫酸和水体积比1∶8、温度60~70℃、改性处理3~5 h.改性后微晶纤维素的内部结晶区结构没有变化,在有机溶剂中的分散性得到良好的改善.  相似文献   

8.
杨晓敏  万金泉 《现代化工》2011,31(10):34-37
以微晶纤维素(MCC)为原料制备了碳基磺酸化固体酸催化剂,用该磺化碳固体酸MCC进行糖化水解,考察其催化水解微晶纤维素的最优条件及碳化温度对催化剂催化活性的影响,并对其重复使用性及再生进行了研究。结果表明,反应温度180℃、反应时间6 h、催化剂用量0.15 g为最佳反应条件,最高糖产率为68.71%;400℃为最佳碳化温度。催化剂重复使用后,由于表面磺酸基团的脱落其活性有所下降,可以通过再磺化得到恢复。  相似文献   

9.
磺酸树脂催化合成尼泊金酯的研究   总被引:1,自引:0,他引:1  
以对羟基苯甲酸(PHBA)和丁醇为原料,用磺酸树脂作催化剂,催化合成了尼泊金丁酯,优化反应条件为:n(丁醇):n(对羟基苯甲酸)=5:1,催化剂磺酸树脂的用量为对羟基苯甲酸质量的21%,反应温度为回流温度,反应时间为5 h。尼泊金丁酯收率可达82.6%,催化剂可重复使用,产品结构用红外光谱图进行了表征。该方法也适合于合成尼泊金戊酯。  相似文献   

10.
《应用化工》2020,(1):55-59
将微晶纤维素(MCC)在冰醋酸/醋酸酐/氯化铁体系下乙酰化,制备醋酸纤维素(CA),考察了催化剂类型及用量、反应温度、反应时间和醋酸酐用量等对CA的取代度和聚合度的影响。研究表明,以氯化铁为催化剂,在冰醋酸/醋酸酐体系下,MCC乙酰化最佳工艺为:0.5 g MCC,0.1 g氯化铁,反应温度50℃,反应时间40 min,5 mL醋酸酐。醋酸纤维素的各项性能均接近商品醋酸纤维素,具有一定的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号