首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell-cell communications.Here,we combined surface-enhanced Raman scattering (SERS) nanoprobes with microfluidic networks to monitor in situ the cancer-immune system intercellular communications.The microfluidic platform links up immune cells with cancer cells,where the cancer-cell secretions act as signaling mediators.First,gold@silver core-shell nanorods were employed to fabricate SERS immunoprobes for analysis of the signaling molecules.Multiple cancer secretions in a tumor microenvironment were quantitatively analyzed by a SERS-assisted three-dimensional (3D) barcode immunoassay with high sensitivity (1 ng/mL).Second,in an on-chip cell proliferation assay,multiple immunosuppressive proteins secreted by cancer cells were found to inhibit activation of immune cells,indicating that the platform simulates the physiological process of cancer-immune system communications.Furthermore,potential drug candidates were tested on this platform.A quantitative SERS immunoassay was performed to evaluate drug efficacy at regulating the secretion behavior of cancer cells and the activity of immune cells.This assay showed the suitability of this platform for in vitro drug screening.It is expected that the fully integrated and highly automated SERS-microfluidic platform will become a powerful analytical tool for probing intercellular communications and should accelerate the discovery and clinical validation of novel drugs.  相似文献   

2.
The sequence-specific RRE RNA-Rev binding is essential for HIV-1 replication and provides a useful in vitro system for real-time evaluating the inhibitory effect of drugs on the RRE-Rev interaction. The rapid and sensitive detection of RRE-Rev interaction in complex biological systems represents a fundamental challenge. Here we report the development of a single-quantum-dot (QD)-based nanosensor for sensitively quantifying Rev peptide-RRE interaction and characterizing the potential inhibitors by virtue of single-molecule detection and QD-based fluorescence resonance energy transfer (FRET). We demonstrate that the stoichiometry of Rev peptide binding to RRE can be accurately determined by using this single-QD-based nanosensor. Importantly, this single-QD-based nanosensor can sensitively quantify the inhibitory efficacy of proflavin on the Rev peptide-RRE binding, even in the presence of substantial levels of interference fluorescence from high-concentration proflavin, which usually prevents the discrimination of FRET signals in ensemble measurements. The application of this nanosensor in the screening of libraries of small-molecule drugs will facilitate the development of new drugs against various diseases, cancers, and HIV.  相似文献   

3.
This article describes an antiallergic drug-screening system by the detection of histamine released from mast cells (suspension cells) on a multilayer microchip. In this study, the elastmeric material, poly(dimethylsiloxane) (PDMS), was employed to fabricate microchannels and microchambers. The microchip consists of two sections: a histamine-releasing one, which has a cell chamber, and a histamine-derivatizing one. Both were laminated to one microchip. Rat peritoneal mast cells were retained in the cell chamber (1.2 microL) with a filtering system using a cellulose nitrate membrane. This filtering system could easily retain suspension cells without cell damage. Mast cells were viable for a sufficient time to conduct the assay on the cell chamber. The cells were stimulated with a chemical release compound 48/80 (C48/80), and then histamine flowed into the lower layer, where it was derivatized to the fluorescent molecules with o-phthalaldehyde and its fluorescence was detected on the microchip. This flow system could detect the time course of the histamine release, and this microchip system required only 20 min for the assay. By this integrated system, 51 pmol of histamine released from 500 cells was detected, and the number of cells required for the assay was reduced to 1% compared with conventional bulk systems. By comparing the released histamine levels with and without drugs, their effect could be evaluated. The inhibition ratio of C48/80 induced-histamine release using an antiallergic drug, disodium cromoglicate (DSCG), was related to the concentration of DSCG. This flow system was applicable for antiallergy drug screening by rapid measurement of the inhibition of histamine release from a very small amount of mast cells.  相似文献   

4.
The assignment of significantly changed NMR signals, which were identified with the help of multivariate models, to individual metabolites in biofluids is a manual and tedious task requiring knowledge in chemometrics and NMR spectroscopy. Metabolite projection analysis, introduced in this work, allows automatic linking of multivariate models with metabolites by skipping the level of manual NMR signal identification. The method depends on the projection of sets of metabolite NMR spectra from a database into PCA or PLS models of NMR spectra of biofluid samples. Metabolites that are significantly changed can be identified graphically in metabolite projection plots or numerically as projected virtual concentration. The method is demonstrated together with a newly introduced algorithm for refined nonequidistant binning using a metabonomics study with amiodarone as administered drug. Amiodarone can induce phospholipidosis in the lung and liver, which is accompanied by associated organ toxicity in these organs. It is shown how metabolite projection analysis allows easy and fast tentative assignment of all structures of metabolites whose concentrations in the urine samples significantly changed upon dosage. These metabolites had also been identified previously by manually interpreting the multivariate models and spectra. Among these metabolites, phenylacetylglycine was also identified as being significantly increased. This metabolite has recently been proposed as urinary biomarker for phospholipidosis.  相似文献   

5.
This present work describes the systematic experimental comparison of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) for pharmacokinetic (PK) analysis of two drug candidates from rat plasma using single reaction monitoring (SRM) on a triple quadrupole mass spectrometer. The electrospray assay is an established method using a fast liquid chromatography (LC) separation of the sample extracts prior to mass spectrometry analysis. The novel MALDI assays measured the concentration levels of the drug candidates directly from the spotted sample extracts. Importantly, for both LC-ESI and MALDI the same solid-phase sample extraction protocol, internal standards, triple quadrupole mass analyzer platform, and SRM conditions were used, thus effectively standardizing all experimental parameters of the two assays. Initially, analytical figures of merit such as linearity, limit of quantitation, precision, and accuracy were determined from the calibration curves, indicating very similar performance for both LC-ESI and MALDI. Moreover, the LC-ESI rat plasma concentration time profiles of the drug candidates after orally dosing the animals were accurately reproduced by the MALDI assay, giving virtually identical PK results. The direct MALDI assay, however, was able to generate the data at least 50 x faster than the LC-ESI assay. It is shown in this study that analyzing the entire PK curve for one animal took less than 2 min using MALDI (with five replicate analyses per sample), whereas the corresponding LC-ESI assay required 80 min, however, allowing only two replicate measurements in that time frame.  相似文献   

6.
A fluorescence turnoff assay for phospholipase C (PLC) from Clostridium perfringens is developed based on the reversible interaction between the natural substrate, phosphatidylcholine, and a fluorescent, water-soluble conjugated polyelectrolyte (CPE). The fluorescence intensity of the CPE in water is increased substantially by the addition of the phospholipid due to the formation of a CPE-lipid complex. Incubation of the CPE-lipid complex with the enzyme PLC causes the fluorescence intensity to decrease (turnoff sensor); the response arises due to PLC-catalyzed hydrolysis of the phosphatidylcholine, which effectively disrupts the CPE-lipid complex. The PLC assay operates with phospholipid substrate concentrations in the micromolar range, and the analytical detection limit for PLC is <1 nM. The optimized assay provides a convenient, rapid, and real-time sensor for PLC activity. The real-time fluorescence intensity from the CPE can be converted to substrate concentration by using an ex situ calibration curve, allowing PLC-catalyzed reaction rates and kinetic parameters to be determined. PLC activation by Ca2+ and inhibition by EDTA and fluoride ion are demonstrated using the optimized sensor.  相似文献   

7.
Bioglass®-based scaffolds for bone tissue engineering have been developed, which can also serve as carriers for drug delivery. For this, P(3HB) microspheres (PMSs) loaded with tetracycline were fabricated and immobilised on the scaffold surfaces by a modified slurry dipping technique. The sustained drug delivery ability in simulated body fluid was confirmed by using UV–Vis absorption spectroscopy measurements. The MTT assay using mouse fibroblast cells provided evidence that the tetracycline loaded microspheres produced in this study show limited cytotoxicity. The scaffolds developed in this work provide mechanical support, adequate 3D surface roughness, bioactivity and controlled drug delivery function, and are thus interesting candidates for bone tissue engineering applications.  相似文献   

8.
In fluorescence resonance energy transfer (FRET)-based assays, spectral separation of acceptor emission from donor emission is a common problem affecting the assay sensitivity. The challenge derives from small Stokes shifts characteristic to conventional fluorescent dyes resulting in leakage of donor emission to the measurement window intended only to collect the acceptor emission. We have studied a FRET-based homogeneous bioaffinity assay utilizing a tandem dye acceptor with a large pseudo-Stokes shift (139 nm). The tandem dye was constructed using B-phycoerythrin as an absorber and multiple Alexa Fluor 680 dyes as emitters. As a donor, we employed upconverting phosphor particles, which uniquely emit at visible wavelengths under low-energy infrared excitation enabling the fluorescence measurements free from autofluorescence even without time-resolved detection. With the tandem dye, it was possible to achieve four times higher signal from a single binding event compared to the conventional Alexa Fluor 680 dye alone. Tandem dyes are widely used in cytometry and other multiplex purposes, but their applications can be expanded to fluorescence-based homogeneous assays. Both the optimal excitation and emission wavelengths of tandem dye can be tuned to a desired region by choosing appropriate fluorophores enabling specifically designed acceptor dyes with large Stokes shift.  相似文献   

9.
The present study documents the drug-excipient incompatibility in the physical mixtures and its influence on bulk homogeneity and flowability for dry powder inhalers (DPI) applications. Binary mixtures with the model drugs (aceclofenac; salbutamol sulphate) and lactose monohydrate were prepared separately at varied drug loading (1–33 wt.%), and their physicochemical properties were assessed using various characterization techniques. The DSC, P-XRD and FT-IR studies show a significant shift in the signature peak of drug and excipient while ss-NMR, LC-MS show the absence of peaks. In contrast, new peaks are observed in LC-MS and GC studies. The insights are comprehended through a series of XPS studies. The findings indicated the formation of condensed or addition compound. This is attributed to an interaction between polar protic groups (-NH-, -COOH, -OH) and hemiacetal carbon (HO-C-OR) of drug and excipient in the solid-state. It induces crystal strain and alters bulk properties related to mixing (relative standard deviation, %RSD), cohesion and flow function coefficient (FFC). However, surface modification of excipient using MgSt and aerosil R972 (model nano-particle) eliminates such inter-particle interactions, crystal level changes. It improves the bulk properties of binary mixtures pivotal for DPI performance.  相似文献   

10.
A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.  相似文献   

11.
Biofluids, like urine, form very complex matrixes containing a large number of potential biomarkers, that is, changes of endogenous metabolites in response to xenobiotic exposure. This paper describes a fast and sensitive method of screening biomarkers in rat urine. Biomarkers for phospholipidosis, induced by an antidepressant drug, were studied. Urine samples from rats exposed to citalopram were analyzed using solid-phase extraction (SPE) and liquid chromatography mass spectrometry (LC/MS) analysis detecting negative ions. A fast iterative method, called Gentle, was used for the automatic curve resolution, and metabolic fingerprints were obtained. After peak alignment principal component analysis (PCA) was performed for pattern recognition, PCA loadings were studied as a means of discovering potential biomarkers. In this study a number of potential biomarkers of phospholipidosis in rats are discussed. They are reported by their retention time and base peak, as their identification is not within the scope of the study. In addition to the fact that it was possible to differentiate control samples from dosed samples, the data were very easy to interpret, and signals from xenobiotic-related substances were easily removed without affecting the endogenous compounds. The proposed method is a complement or an alternative to NMR for metabolomic applications.  相似文献   

12.
Abstract

Release of two very soluble beta adrenergic blockers namely: metoprolol tartrate and alprenolol HCl from cellulose matrices containing hydroxypropylcellulose (HPC) or sodium carboxymethylcellulose (Na CMC) or methylcellulose (MC), or MC + Na CMC or HPC + Na CMC in different ratios was studied in distilled water using USP dissolution apparatus 2. Increase in the ratio of total polymer to drug has decreased the release rate in a nonlinear manner. When only one polymer (HPC or Na CMC) was used, the release profiles were of first-order or sigmoidal in nature respectively. MC matrices disintegrated in < 1 h. By mixing the drug with an optimum amount of the nonionic (HPC or MC) and anionic (Na CMC) polymers, zero-order release profiles with excellent reproducibility were obtained. Rate of erosion of the matrix was 2.5 times higher when drug, Na CMC and HPC were present compared to the matrix containing only drug and HPC. This indicates that the diffusional pathlength for the drug increases with time when HPC alone was present and the former might be constant when an optimum percent of nonionic (HPC or MC) and anionic (Na CMC) polymers were present in the matrix.  相似文献   

13.
14.
High-throughput screening of combinatorial libraries has evolved from studying large diverse libraries to analyzing small, structurally similar, focused libraries. This paradigm shift has generated a need for rapid screening technologies to screen both diverse and focused libraries in a simple, efficient, and inexpensive manner. We have proactively addressed these needs by developing a high-throughput, solution-based method combining size exclusion (SEC), two-dimensional liquid chromatography (2-D LC), and mass spectrometry (MS) for determining the relative binding of drug candidates in small, focused medicinal libraries against human serum albumin (HSA). Two types of libraries were used to evaluate the performance of the system. The first consisted of five diverse ligands with a wide range of hydrophobicities and whose association constants to HSA cover 3 orders of magnitude. A beta-lactam library composed of structurally similar compounds was used to further confirm the validity of the methodology. The ability to distinguish site-specific interactions of drugs competing for individual domains of the HSA receptor is also demonstrated. Comparison of chromatographic profiles of the library components before and after incubation with the receptor using multiple reaction monitoring allowed a ranking of the ligands according to their relative binding affinities. The observed rankings correlate closely with literature values of the association constants between the respective ligands and HSA. This simple, rugged methodology can screen a wide spectrum of chemical entities from combinatorial mixtures in less than 6 min.  相似文献   

15.
This work reports how novel multi-layered (from double-layered to quadruple-layered) microparticles comprising immiscible polymers can be fabricated through a simple, economical, reliable and versatile one-step solvent evaporation method. These multi-layered microparticles would be excellent candidates to overcome problems inherent in single-layered microparticles for drug delivery. Particle morphologies, layer configurations, and drug distribution were determined by scanning electron microscopy and Raman mapping. Key process parameters achieving the formation of the multi-layered structure were identified. Encapsulation of multiple drugs and layer localization of these drugs within these multi-layered microparticles have also shown to be possible, which were driven by drug-polymer affinity. This one-step fabrication technique can therefore be used for tailoring particle designs, thus facilitating the development of multiparticulate drug delivery devices.  相似文献   

16.
The purpose of the present study was to examine the relevancy of the high throughput solubility assay and permeability assay to the biopharmaceutics classification system (BCS). Solubility and permeability were measured by high throughput solubility assay (HTSA) and parallel artificial membrane permeation assay (PAMPA), respectively. High throughput solubility assay was performed using simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid without bile acid (SIF, pH 6.8). We categorize 18 drugs based on the BCS using HTSA and PAMPA. Fourteen out of 18 drugs were correctly classified (78% success rate). The result of the present study showed that HTSA could predict BCS class with a high success rate, and PAMPA could also be useful to predict the permeation of drugs.  相似文献   

17.
L Ruan  Z Xu  T Lan  J Wang  H Liu  C Li  C Dong  J Ren 《Analytical chemistry》2012,84(17):7350-7358
Apoptosis plays a crucial role in many biological processes and pathogenesis of various malignancies and diseases of the immune system. In this paper, we described a novel method for sensitive detection of drug-induced apoptosis by using fluorescence correlation spectroscopy (FCS). The principle of this method is based on the assay of DNA fragmentation in the process of the drug-induced apoptosis. FCS is a single molecule method, and it can be used for sensitive and selective assay of DNA fragmentation without separation. We first developed a highly sensitive method for characterization of DNA fragments using a home-built FCS system and SYBR Green I as fluorescent DNA-intercalating dye, and then established a model of drug-induced apoptosis using human pancreatic cancer cells and a drug lidamycin. Furthermore, FCS method established was used to directly detect the fragmentation of DNA extracted from apoptotic cells or in the apoptotic cell lysate. In FCS assay, the single-component model and the multiple-components model were used to fit raw FCS data. The characteristic diffusion time of DNA fragments was used as an important parameter to distinguish the apoptotic status of cells. The obtained data documented that the characteristic diffusion time of DNA fragments from apoptotic cells significantly decreased with an increase of lidamycin concentration, which implied that DNA fragmentation occurred in lidamycin-induced apoptosis. The FCS results are well in line with the data obtained from flow cytometer and gel electrophoresis. Compared to current methods, the method described here is sensitive and simple, and more importantly, our detection volume is less than 1 fL, and the sample requirement can easily be reduced to nL level using a droplets array technology. Therefore, our method probably becomes a high throughput detection platform for early detection of cell apoptosis and screening of apoptosis-based anticancer drugs.  相似文献   

18.
Liu KW  Biswal SL 《Analytical chemistry》2011,83(12):4794-4801
The interaction of surfactants with lipid membranes can result in composition change, area expansion, solubilization, or the formation of protrusion features of the membranes. Amphipathic surfactant molecules are simplified analogues to membrane-active drugs and peptides which are known for inserting into lipid bilayers; however, the effect of these amphipathic molecules on supported membranes is not well characterized. In this paper we explore the use of microcantilever sensors to quantify surfactants' effects on lipid membranes. We use microcantilevers which are coated with lipid membranes to probe the interactions between lysolipids and supported lipid bilayers (SLBs). In particular, we investigate the effects of four zwitterionic surfactants similar to phospholipids: lysolipids of different aliphatic chain lengths (lysophosphocholines, lysoPCs, 12:0, 14:0, 16:0, and 18:0) on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine-supported lipid bilayers. By monitoring the deflection of the microcantilevers, real-time free energy changes in the SLBs upon the addition of lysolipids can be detected. Additionally, the bending direction reveals whether the lysoPCs incorporate into or solubilize the SLB. When the bulk lysoPC concentration is less than its critical micelle concentration (CMC), we observe a compressive bending of the microcantilever, indicating adsorption to the SLB. Additionally, the change in surface stress is found to be proportional to the amount of membrane-bound lysoPCs. For bulk concentrations greater than the CMC, lysoPCs 12:0 and 14:0, there is tensile bending, indicating that the lysoPCs begin to solubilize and destroy the SLBs. Interestingly, this is not observed for lysoPCs with longer chain lengths. This new method of using microcantilevers for detecting and quantifying the surfactant insertion and solubilization of SLBs offers additional insights into the interactions between small amphipathic molecules and lipid membranes.  相似文献   

19.
The potential of a nucleic acid-based optical bioprobe for environmental measurements and drug monitoring is described. The sensor employs the long-wavelength intercalating fluorophore TO-PRO-3 (TP3). Compounds that interact with the TP3-DNA complex are indirectly detected by a decrease in the fluorescence intensity. We found that the configuration and length of the DNA dramatically affected the intensity of the fluorescence emitted from the TP3-DNA complex. We compared nucleic acids from different sources and optimized the system for pBR322 plasmid DNA (4363 bp) digested by HindIII restriction endonuclease. This endonuclease has a single recognition site in plasmid pBR322. In the proposed method, we attempt to combine broad-range detection with rapid and simple operation. A fiber-optic capillary fluorescence system was used to analyze toxic aromatic amines, antibiotics, and several kinds of antitumor drugs, using small amounts of sample, down to 10 muL, with a sensitivity comparable to that of current electrochemical methods. The detection limit can be as low as a few ppb or submicromolar. This approach is useful for routine screening in environmental monitoring or for controlling cytotoxic drug administration. The ease of operation and the rapid response allow high-throughput screening.  相似文献   

20.
A comparison is made of the quantitative detection of a labeled antibody by surface-enhanced resonance Raman scattering (SERRS) and by fluorescence using the same instrument with the same laser excitation source. The area under the curve for the fluorescence band is greater than for any single peak in the SERRS spectrum, but the broad fluorescence band is more difficult to discriminate from the background at low concentrations. Using the peak height of one SERRS band and the peak height at the fluorescence maximum, the detection limit for SERRS was lower (1.19 x 10-11 mol.dm-3) than that obtained using fluorescence (3.46 x 10-10 mol.dm-3). The SERRS detection limit is calculated for the concentration of the sample added, but compared to fluorescence, there is an additional dilution step due to the addition of the colloid and the extent of this dilution is dependent on assay format. For comparison with the detection limits found earlier with labeled oligonucleotides, SERRS was remeasured with a 10 s accumulation time, and the final concentration in the cuvette after colloid addition and before any adsorption to the silver was used to calculate a detection limit of 2.79 x 10-13 mol.dm-3. This is comparable to the detection limit found using a similar SERRS procedure for an oligonucleotide labeled with the same dye. This experiment is dependent on many parameters that could affect this result, including the nature of the SERRS substrate, the excitation wavelength, and the dye chosen. However, the result indicates that SERRS can give assay sensitivities comparable or better than fluorescence for quantitative direct assay determination, suggesting that the much greater potential for multiple analyte detection could be exploited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号