共查询到18条相似文献,搜索用时 68 毫秒
1.
环氧氯丙烷改性花生壳对次甲基蓝的吸附研究 总被引:1,自引:0,他引:1
以花生壳为原料,环氧氯丙烷为改性剂,对花生壳进行改性制备吸附剂,并对其吸附次甲基蓝的性能作了较系统的研究。结果表明,在 2.0 g 花生壳中分别加入 1.25 mol/L 的NaOH溶液 45 mL 和环氧氯丙烷 25 mL,控制温度 40℃,搅拌反应 30 min,经过滤、水洗干燥后得到改性的花生壳,用此改性的花生壳吸附次甲基蓝的最佳条件为:处理 100 mg/L 的次甲基蓝溶液 50 mL,用 0.2 g 改性花生壳,pH值在6.48,搅拌吸附 60 min,在此条件下吸附率可达 99%,吸附后的花生壳用 0.5 mol/L NaOH溶液再生,重复使用3次对次甲基蓝的吸附率在 96% 以上;未改性花生壳对次甲基蓝的吸附率仅为 82%。 相似文献
2.
环氧氯丙烷改性花生壳吸附水中次甲基蓝的研究 总被引:1,自引:0,他引:1
以花生壳为原料,环氧氯丙烷为改性剂,对花生壳进行改性制备吸附剂,并对其吸附次甲基蓝的性能作了较系统的研究.结果表明,在2.0g花生壳中分别加入1.25moL/L的NaOH溶液45mL和环氧氯丙烷25mL,控制温度40℃,搅拌反应30分钟,得到改性的花生壳,用此改性的花生壳吸附次甲基蓝的最佳条件为:处理100mg/L的次甲基蓝溶液50mL用0.2g改性花生壳,pH在6.48,搅拌吸附60分钟,在此条件下吸附率可达99%,脱色效果显著;吸附后的花生壳用0.5mol/LNaOH溶液再生,重复使用3次对次甲基蓝的吸附率在96%以上;同时,比较了改性花生壳和未改性花生壳对次甲基蓝的吸附性能,未改性花生壳对次甲基蓝的吸附率为82%,改性花生壳对次甲基蓝的吸附率为99%. 相似文献
4.
5.
6.
利用粉煤灰作为吸附剂,分别对生化处理前焦化废水和生化处理后焦化废水进行了吸附处理,并将处理效果进行了对比,考察了pH值,药剂投加量,吸附时间,吸附温度等因素对处理效果的影响,得出最佳处理条件为:废水pH值为5左右时,每100 mL废水中加入6 g粉煤灰,吸附时间为40 min,处理后焦化废水的COD和色度可达污水综合排放标准(GB8978—96)中二级排放标准。对吸附处理后的焦化废水利用Fenton试剂进一步氧化处理,每升废水中投加1.40 g FeSO_4,1 mL质量分数为30%双氧水,氧化30 min后,废水中COD、色度以及含油量均达到污水综合排放标准(GB8978—96)中一级排放标准,并且此种处理方法比单独用Fenton氧化法处理,每升废水可节约3 mL双氧水和4.2 g FeSO_4,大大减少了药剂使用量,减少了废水处理的成本。 相似文献
7.
为了研究氧化石墨烯(graphene oxide,GO)对染料分子的吸附作用,选用甲基橙(Mmethyl orange,MO)和亚甲基蓝(methylene blue,MB)两种有机染料为目标分子,考察甲基橙/亚甲基蓝的初始浓度、吸附剂的用量对吸附性能的影响。采用紫外可见吸收光谱仪测定吸附后有机染料的吸光度值,寻求最佳吸附条件与吸附量。当甲基橙浓度为25mg·L~(-1),体积为30m L,氧化石墨烯的质量为20mg时和亚甲基蓝浓度为240mg·L~(-1),体积为25m L、氧化石墨烯的质量为10mg时,氧化石墨烯的吸附量分别可以达到5.427和543.29mg·g~(-1)。实验结果表明:氧化石墨烯对亚甲基蓝染料的吸附性能优于甲基橙。 相似文献
8.
9.
以Ni~(2+)、总磷和氨氮为考察对象,采用Fenton氧化和沸石吸附联合处理化学镀镍废水。探讨了Fenton破络及协同氧化非正磷酸盐时,H_2O_2的质量浓度、m(Fe~(2+))∶m(H_2O_2)、初始pH值对Ni~(2+)和总磷去除率的影响。另外,研究了沸石吸附氨氮时,沸石量、吸附时间、吸附pH值对氨氮去除率的影响。结果表明:当H_2O_2的质量浓度为6.66g/L、m(Fe~(2+))∶m(H_2O_2)为0.06、初始pH值为3时,破络完全,非正磷酸盐转化率为99.45%;同时,Ni~(2+)和总磷的去除率分别达到99.72%和91.88%。当沸石量为8g/100mL、pH值为7、反应时间为60min时,氨氮的去除率为86.30%。 相似文献
10.
以活性炭纤维为催化剂,采用微波诱导氧化工艺处理亚甲基蓝废水,考察了活性炭纤维用量、微波辐射时间、溶液浓度、pH值、盐含量、过氧化氢加入量等因素对处理效果的影响。结果表明,0.05 g活性炭纤维与400 mg/L 25 mL废水混合,在微波功率1 000 W,辐射时间120 s的条件下,亚甲基蓝的去除率达到98.2%,pH、盐和过氧化氢加入量对处理效果有不同的影响。微波诱导氧化、活性炭纤维吸附、单独微波辐射和沸水浴加热四种不同工艺的对比实验表明,微波诱导氧化工艺具有明显的优越性,不会对环境造成二次污染,机理是通过吸附和高温氧化协同作用。氧化动力学过程符合一级反应规律。活性炭纤维催化活性随着使用时间增加而减弱,连续使用29 min,催化能力几乎消失。 相似文献
11.
鸡蛋壳对废水中亚甲基蓝的吸附性能研究 总被引:1,自引:0,他引:1
以废弃的鸡蛋壳为吸附剂,研究了其对亚甲基蓝的吸附作用,利用红外光谱对吸附前后的鸡蛋壳进行了表征。考察了溶液初始浓度、吸附温度、溶液p H、吸附时间对废水中亚甲基蓝吸附性能的影响。由此得出了鸡蛋壳对亚甲基蓝的最佳吸附条件。通过动力学模型、等温线方程对吸附实验数据进行了非线性拟合,结果表明,鸡蛋壳吸附亚甲基蓝等温线能较好较符合拟二级动力学模型,吸附过程为物理吸附;吸附过程较符合Freundlich方程,吸附过程为多层吸附;热力学参数分析结果显示该鸡蛋壳对亚甲基蓝吸附为自发、熵减小、放热过程。 相似文献
12.
研究了不同条件下王棕果壳粉对亚甲基蓝的吸附性能,得到吸附的最佳条件为王棕果壳用量10g/L,溶液pH值7,吸附时间30min,温度30℃,亚甲基蓝去除率可达98%。应用准一级动力学方程、准二级动力学方程、颗粒内扩散方程模拟了王棕果壳粉吸附亚甲基蓝的动力学过程,准二级动力学方程的R2值均大于0.9991,且平衡吸附量的计算值(qe,cal)与实验值(qe,exp)非常接近,说明该方程适合描述整个吸附过程。用Langmuir和Freundlich模型模拟吸附等温线,结果表明Langmuir方程(R2值均大于0.995)更适合描述此吸附过程,在303K下最大单层吸附量为17.36mg/g。计算了吉布斯自由能变(ΔG0)、焓变(ΔH0)、熵变(ΔS0)、吸附势(E)等热力学参数,ΔG0、ΔH0、ΔS0均小于0,说明此吸附过程是一个自发进行的、放热的、趋于有序的吸附过程。在相同温度下,随着亚甲基蓝初始质量浓度的增加,对应的E值逐渐降低。 相似文献
13.
改性海泡石对亚甲基蓝的吸附性能 总被引:1,自引:0,他引:1
对海泡石进行了硫酸改性、高温改性、硫酸/高温改性,以亚甲基蓝为吸附对象,研究了改性方法对海泡石吸附性能的影响,对各改性海泡石进行了孔径、孔体积等表征. 结果表明,3种改性方法中,硫酸/高温改性对海泡石吸附性能的提高效果最好,吸附量比改性前提高47.8%,达41 mg/g,吸附等温线符合Langmuir方程. 硫酸/高温复合改性后的海泡石平均孔径达9.74 nm,孔体积达7.064′10-2 cm3/g,分别提高117%和92.6%. 对改性海泡石对亚甲基兰的吸附机理进行了探讨. 相似文献
14.
15.
文章探索了高岭土尾矿对亚甲基蓝溶液的吸附性行为,测定了高岭土尾矿的粒度与用量、亚甲基蓝溶液的pH与浓度、吸附时间及吸附温度等因素对亚甲基蓝吸附性能的影响。结果表明:在碱性条件下,高岭土尾矿对亚甲基蓝溶液有较好的吸附能力,亚甲基蓝浓度增加,高岭土尾矿对其脱色率减小,而随着高岭土尾矿用量的增加,则脱色率不断提高。高岭土尾矿对亚甲基蓝的等温吸附服从Freundlich方程式。高岭土尾矿对亚甲基蓝吸附的随时间的增加、温度的升高而增加。通过对这些参数的探索和测定,高岭土尾矿的吸附能力可以达到98%以上,高岭土尾矿能有效除去溶液中的亚甲基蓝。 相似文献
16.
《云南化工》2017,(4):22-28
以山竹壳为原料,采用磷酸—硫酸活化法制备了比表面积为1730m~2·g~(-1)的活性炭。研究了山竹壳活性炭吸附亚甲基蓝的吸附性能,考察了亚甲基蓝溶液的pH、不同初始浓度、吸附时间、温度等条件对吸附效果的影响。应用准一级动力学方程、准二级动力学方程模拟了山竹壳活性炭吸附亚甲基蓝的动力学过程,结果表明准二级动力学方程适合描述整个吸附过程。用Langmuir和Freundlich模型模拟吸附等温线,Langmuir方程更适合描述此吸附过程,在298K下最大单层吸附量为526.31mg·g~(-1)。计算了吉布斯自由能(ΔG~0)、焓变(ΔH~0)、熵变(ΔS~0)等热力学参数,ΔG~0、ΔH~0、ΔS~0均小于0,说明此吸附过程是一个自发进行的、放热的、趋于有序的吸附过程。 相似文献
17.