首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
阻燃高分子材料是功能聚合物发展的重要分支之一,拟在分析将石墨烯及其衍生物用于聚合物的阻燃机理基础之上,对石墨烯/聚合物复合材料的共价及非共价制备方法进行系统介绍和综述,进而针对目前相关产品的阻燃应用现状,介绍了功能化石墨烯/聚合物的效能测试研究方法和进展。  相似文献   

2.
利用聚合物对石墨烯进行表面改性,能有效避免石墨烯层间堆积并提高其在溶剂及聚合物基体中的分散性,从而使其优异的理化性能得到充分发挥。综述了通过非共价和共价两种方法对石墨烯进行表面改性的研究进展,讨论了所制备石墨烯/聚合物复合材料在传感器、高强度材料和能源等领域中的应用。  相似文献   

3.
石墨烯作为一种新型的二维碳纳米材料,引起了科学家们极大的兴趣。其中石墨烯/聚合物复合材料具有优异的导电性能,广泛应用于电子、电气等领域。石墨烯片层易于团聚,在聚合物基体中分散不均匀,严重影响了石墨烯/聚合物复合材料的导电性能,需要对石墨烯及其衍生物进行表面改性。表面改性能有效地提高石墨烯在聚合物基体中的分散性,改善石墨烯与聚合物基体的相容性。文中介绍了石墨烯的共价改性(亲核取代反应、亲电取代反应、缩聚反应)和非共价改性(表面活性剂吸附、杂化修饰)的方法,以及对石墨烯/聚合物复合材料导电性的影响,总结了2种改性法的优缺点,最后展望了石墨烯改性及其在聚合物导电复合材料应用方面的研究方向。  相似文献   

4.
石墨烯具有优异的机械性能及导热性能,将其与聚合物结合制成复合材料,是发挥石墨烯优异性能最可行的方法之一.然而,石墨烯在聚合物中分散时易团聚,石墨烯功能化是解决这一问题最常用的方法.基于以上背景,重点介绍了石墨烯与氧化石墨烯的功能化方法,包括共价功能化和非共价功能化.同时,阐述了功能化石墨烯在改性环氧树脂力学性能和导热性...  相似文献   

5.
介绍了氧化石墨烯及其改性,氧化石墨烯/聚合物的制备方法。优异的性能使复合材料应用广泛,主要用在超级电容器、燃料电池、阻燃材料、生物医学等领域。同时提出了复合材料研究中的一些问题,如氧化石墨烯的改性及复合材料的实际应用。  相似文献   

6.
作为一种新型的碳材料,石墨烯优良的导电、导热性能、光学显示性能等成为很多科学研究的焦点.其对聚合物的阻燃效应也日趋得到关注,在聚合物/石墨烯体系中,石墨烯可以促使聚合物迅速碳化,有利于改善聚合物的阻燃性能.主要综述了近5年来石墨烯或者改性石墨烯体系在聚合物阻燃改性中的研究应用进展,并尝试指出此类体系的进一步研究方向.  相似文献   

7.
介绍了石墨烯的功能化方法,阐述了石墨烯的表面改性和电子改性研究的现状。着重分析了基于有机小分子、聚合物复合材料及特殊石墨烯共价键的功能化方法,π键、离子键和氢键等非共价键的功能化方法,以及改性石墨烯相关性能的提高表现。详细介绍了改性石墨烯在电催化剂载体方面的应用及其展示出的优异性能。并对功能化石墨烯的发展进行了展望。  相似文献   

8.
石墨烯具有优良的热性能、机械性能和电性能,填充少量石墨烯即可提高复合材料的性能。从石墨烯的制备开始,介绍了石墨烯的化学改性方法,包括羧基、羟基、环氧基的改性以及非共价键功能化和聚合物功能化的研究进展;总结了聚合物/石墨烯复合材料的制备方法以及聚合物/石墨烯复合材料的应用并展望了石墨烯及其复合材料的发展方向。  相似文献   

9.
近年来,石墨烯改性聚氨酯纳米复合材料因其优异的综合性能而备受关注。在聚氨酯基体中添加石墨烯或其衍生物可显著提升聚氨酯的物理机械、热学、电磁学等性能,满足聚合物复合材料高性能和多功能的特殊要求。首先介绍了石墨烯的功能化改性方法,包括共价键改性和非共价键改性。随后介绍了石墨烯/聚氨酯纳米复合材料的制备工艺,包括原位聚合、溶液共混、熔融共混、水相(胶乳)共混等。综述了石墨烯/聚氨酯纳米复合材料在物理机械性能、导电性能、介电性能、导热性能、气体阻隔性能、阻燃性能、电磁屏蔽性能和防腐蚀性能等方面的最新研究进展。最后,对石墨烯/聚氨酯纳米复合材料面临的挑战和发展前景进行了展望。  相似文献   

10.
石墨烯是碳原子以sp2杂化形成的、具有六角型晶格结构的二维片层材料,其厚度薄、比表面积大,同时还具有优异的力学、电学、光学和热学等性能,可以作为纳米填料提高聚合物材料的各项物理及化学性能。阐述了石墨烯及其改性衍生物作为一种新型助剂在改善聚合物阻燃性能、提高抗老化特性等方面中的国内外研究进展。结合石墨烯的物理化学特性及改性方法,讨论了石墨烯提升聚合物阻燃性及抗老化性能的作用效果及机理,其中包括对炭层形成的促进作用、对氧气或降解产物的阻隔效应、对老化降解产生的过氧自由基的捕捉作用等。通过分析现有的研究结果,总结了石墨烯在聚合物阻燃与抗老化应用领域中的优势和不足之处,并对其发展前景及有待解决的基本科学问题进行了展望。  相似文献   

11.
石墨烯是一种新型二维近似平面结构的碳纳米材料,具有非常卓越的光电性能,为更好地发挥其优异性能,对其表面功能化改性颇受人们关注。重点阐述了卟啉类衍生物对石墨烯的共价和非共价功能化修饰及通过共价和非共价方式构筑其纳米复合材料和此纳米材料在非线性光学和电化学传感器制备等应用中的最新研究进展,并展望了石墨烯卟啉杂化材料在相关领域里的应用。  相似文献   

12.
介绍卟啉类化合物共价和非共价复合石墨烯的制备方法,分析石墨烯形态、卟啉性质和制备方法对复合物光电性能的影响,以及卟啉与石墨烯的二元和三元复合物在可见光光催化方面的研究情况。最后对存在的主要问题及解决方法进行了阐述。  相似文献   

13.
石墨烯作为一种新型二维平面纳米材料,其特殊的单原子层结构赋予了它许多新奇的物理性质,如优异的力学性能、良好的导电和导热性能、杰出的摩擦学性能等,在航空、航天等多个领域显示出良好的应用前景。本文针对石墨烯在聚合物中的分散性问题,对石墨烯表面修饰的研究进展进行了综述,包括π键和离子键非共价功能化以及有机小分子、线型聚合物和超支化聚合物共价功能化等,并总结了石墨烯对聚合物导电性能、热学性能、机械性能以及摩擦学性能的影响,指出了其今后的研究方向及发展前景。  相似文献   

14.
综述了近年来纳米碳材料在聚合物阻燃应用方面所取得的研究进展,重点讨论了碳纳米管、富勒烯、石墨烯和纳米炭黑等纳米碳材料在单独用作阻燃剂、改性后用作阻燃剂以及与其他物质协同阻燃聚合物方面取得的研究成果,并指出聚合物/纳米碳材料阻燃体系的研究应侧重于阻燃机理,并将纳米碳材料与其他阻燃剂协同使用,以便发挥各自的优势。  相似文献   

15.
随着石墨烯低成本宏量制备技术的突破,石墨烯的工业化应用进程已引起人们广泛关注。本文介绍了石墨烯在聚合物基复合材料领域的研究进展,侧重阐述石墨烯/聚合物复合材料在力学增强、导电/导热网络构建、防腐阻燃等方面的代表性研究成果,同时对商业化石墨烯产品及其复合材料应用进行了简单评述,探讨了石墨烯/聚合物复合材料领域目前存在的主要问题及未来发展趋势。  相似文献   

16.
综述了聚合物基石墨烯及改性石墨烯纳米复合材料的研究进展.添加少量的石墨烯就可以显著提聚合物材料的各方面性能,因此,近年来石墨烯得到了学术界和工业界的高度关注,石墨烯、氧化石墨烯的改性,以及聚合物基石墨烯纳米复合材料被广泛研究.通过广泛的文献阅读对聚合物基石墨烯纳米复合材料的结构、制备方法以及性能进行了深入探讨.  相似文献   

17.
石墨烯(Gr)具有优异的光学、电学和力学等特性,在材料、能源或生物医学领域具有重要的应用前景,特别是Gr具有超隔离性,当将其用作涂料填料使用时,可极大提高涂层的防腐性能。但是由于Gr的高比表面积及层间的范德华力,又使其非常容易团聚,限制了其实际使用。对Gr进行分散改性,促进其在基体中的均匀分布,对扩大Gr的应用范围和提高材料的性能具有重要意义。本文主要介绍了Gr及其衍生物的共价改性、非共价改性、掺杂改性和原位聚合改性等方法,通过增加Gr层间位阻效应,改变Gr表面的双亲性,增强其与涂料聚合物基之间的相容性,从而提高其在涂料中的分散性。此外,本文还分析了各种改性方法的优缺点,提出了进一步提高Gr及其衍生物分散性的改性方向;总结了Gr及其衍生物在防腐涂料中的作用机制,建议今后在实验探索的基础上,加强对防腐机制的研究。   相似文献   

18.
综述了石墨烯修饰电极在电化学生物传感器研究中的最新进展.主要介绍了共价和非共价功能化石墨烯的方法,以及基于石墨烯修饰电极的电化学生物传感器在几种常见检测底物中的应用研究进展.最后对石墨烯修饰电极今后的研究方向进行了展望.  相似文献   

19.
氧化石墨烯(GO)是石墨烯的衍生物,能够阻隔水分子和氧气等腐蚀因子进入到金属表面,在金属防腐方面有着巨大的潜力。对GO在金属防腐中的应用研究进行了概述,主要从GO的共价和非共价改性的角度出发,归纳总结了改性GO在聚氨酯和环氧树脂等有机涂料中的防腐应用,并展望了改性GO在防腐涂料中的发展方向。  相似文献   

20.
《中国粉体技术》2021,(1):11-21
石墨烯薄膜、石墨烯基复合涂料、六方氮化硼、二硫化钼等二维纳米材料具有良好的抗渗透性,在腐蚀防护领域有着广阔的应用前景。首先,概述单层和多层石墨烯涂层的制备方法、防腐机理、实际存在的问题及改进方法;随后,在石墨烯基复合涂料方面,主要探讨石墨烯和氧化石墨烯的各种共价或非共价改性方法及其在有机涂料中的腐蚀防护机制;此外,介绍六方氮化硼和其他二维纳米材料作为新型耐腐蚀材料的主要研究成果;最后,对二维纳米材料在腐蚀防护领域的研究前景进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号