首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用静电纺丝技术,借助高挥发溶剂的制孔性,通过调控二醋酸溶液的浓度,制备了串珠状、条带状和圆柱状的多孔二醋酸超细纤维。通过扫描电镜观察纤维形貌,通过电导率仪测试纺丝液电导率,运用黏度计测试纺丝液黏度,利用滤料综合性能测试台测试纤维形貌、纺丝时间及空气流量对复合滤料过滤性能的影响。实验结果表明,随溶液浓度增加,多孔纤维形貌可由"串珠状"过渡到"条带状"最终变为"圆柱状",条带状纤维和圆柱状纤维有利于提高纤维的过滤效率,而串珠状纤维有利于降低复合滤料的过滤阻力;随着纺丝时间的延长,复合滤料的过滤效率和过滤阻力均呈增大趋势;随着空气流量的增加,复合滤料过滤效率略有降低,而其过滤阻力增加明显。  相似文献   

2.
利用静电纺丝技术制备了不同纺丝时间的聚对苯二甲酸乙二醇酯(PET)纳米纤维膜,将PET纳米纤维膜、热熔型胶膜及涤纶针刺毡通过热处理复合,制备了三明治结构的PET纳米纤维膜/涤纶针刺毡过滤复合材料,利用SEM分析了PET纳米纤维膜形貌,通过TGA确定了PET纳米纤维膜的热处理条件,对不同纺丝时间的PET纳米纤维膜/涤纶针刺毡过滤复合材料透气性能、过滤性能进行了研究。结果表明:纺丝液浓度为18%,纺丝电压为15 kV,接收距离为21 cm,环境温度为13℃,环境湿度为20%条件下得到的PET纳米纤维膜纤维平均直径为514.95 nm;PET纳米纤维膜与涤纶针刺毡的复合温度为115℃;随纺丝时间的增加,PET纳米纤维膜的密度增加,PET纳米纤维膜/涤纶针刺毡过滤复合材料对颗粒物的过滤效率增大,透气性下降,当密度为3.86 g/m2时,PET纳米纤维膜/涤纶针刺毡过滤复合材料的过滤性能最优,其品质因子QF明显优于常规涤纶针刺毡,对1 μm以下颗粒物的过滤效率均高于93%,效率提高了58%以上,表现出优异的过滤性能。   相似文献   

3.
以聚酯纤维无纺布为接收基材,通过静电纺丝技术制备了包覆2-甲基咪唑锌盐(ZIF-8)纳米颗粒的聚偏氟乙烯(PVDF)/ZIF-8超细纤维过滤材料,系统研究了纺丝液浓度对PVDF纤维形貌的影响和不同纳米纤维复合膜克重的PVDF/ZIF-8复合滤材的过滤性能。研究表明:ZIF-8可显著降低PVDF/ZIF-8复合纤维的直径,最小平均直径可达(83±11) nm。在最佳纺丝条件下,随着纳米纤维复合膜克重的增加,纤维毡的过滤效率与阻力均增加。对于质量中值直径为0. 26μm的Na Cl气溶胶,PVDF/ZIF-8复合纤维毡的过滤效率为95. 910%时,阻力为47. 6 Pa;过滤效率为99. 534%时,阻力为111. 1 Pa。ZIF-8与纳米纤维结合形成的超细纤维复合毡,为低克重节能滤材的研制提供了新的思路。  相似文献   

4.
采用静电纺丝技术,借助高挥发溶剂的制孔性,制备了多孔超细二醋酸纤维。通过调控纺丝过程中多孔超细二醋酸纤维和无孔纳米二醋酸纤维的比例,制备了不同交叉结构的多孔超细/无孔纳米二醋纤复合膜。通过扫描电镜观察纤维膜的形貌,利用电导率仪测试纺丝液电导率,运用黏度计测试纺丝液的黏度,利用多孔材料孔径分析仪测试复合膜的孔径分布,通过滤料综合性能测试台测试不同空气流量下复合膜的过滤性能。结果表明:随着无孔纳米纤维在复合膜中比例的增加,复合膜的孔径分布范围变窄,孔径减小,堆积密度增加;过滤效率和过滤阻力都呈增大的趋势;当纺丝过程中,多孔超细纤维与无孔纳米纤维纺丝针管数目比例为1∶2时,所制备的复合膜具有最好的品质因数,在空气流量为80L/min时,其过滤阻力仅为280Pa,过滤效率可达99.472%。  相似文献   

5.
采用静电纺丝技术将聚丙烯腈(PAN)纳米纤维收集在皮芯型聚乙烯-聚丙烯(PE-PP)双组分微米纤维网上,制备PAN/PE-PP单层复合纤维网,再将多个单层复合纤维网层层堆叠,经热黏合加固,制备PAN/PE-PP多层复合空气过滤材料,研究了PAN/PE-PP复合纤维网的层数和纺丝时间对其孔径及过滤性能的影响。结果表明:多层复合的方式可得到与单层复合材料相似的孔径参数,但两种材料的孔道结构不同。在总面密度和总纺丝时间一定时,当PAN/PE-PP复合纤维网的层数大于10层时,PAN/PE-PP多层复合过滤材料的过滤效率和品质因子QF均明显大于PAN/PE-PP单层复合过滤材料,阻力略微增大;其中,相较PAN/PE-PP单层复合过滤材料,20层PAN/PE-PP复合过滤材料对≥0.3 μm颗粒的过滤效率提高了33%,阻力增加了5 Pa,QF值提高了30%。当总面密度和层数一定时,延长静电纺丝时间≥210 min,20层PAN/PE-PP复合过滤材料对颗粒的过滤效率可提高至90%以上,但阻力也急剧增大,因此静电纺丝时间为210 min的PAN/PE-PP多层复合材料的过滤性能最佳。因此,与相同面密度的PAN/PE-PP单层复合过滤材料相比,PAN/PE-PP多层复合过滤材料的过滤性能明显提高;微纳米纤维多层复合法是制备高效低阻复合空气过滤材料的有效方法。   相似文献   

6.
采用静电纺丝技术,以二氯甲烷和三氟乙酸混合溶液为溶剂,制备了PET/TPEE复合纳米纤维膜。首先研究了PET与TPEE共混比对所得纳米纤维形貌的影响,并对共混PET/TPEE纳米纤维膜以DSC、TG进行表征。然后,研究了不同面密度复合纳米纤维膜的阻气性能及空气过滤性能。结果表明:经SEM表征,PET/TPEE为4∶1(质量比)时,纤维具有较好的形貌。PET/TPEE共混体系呈现非晶态,熔融温度为251.28℃,失重温度介于两单体之间。随着纤维膜面密度增加,阻气性增加,过滤效率也增加。  相似文献   

7.
利用氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)溶剂体系先后溶解竹纤维素和聚丙烯腈(PAN),配成纺丝液,采用静电纺丝技术成功制备出直径为130 nm^450 nm的竹纤维素/PAN超细纤维。通过研究竹纤维素/PAN超细纤维平均直径与纺丝参数关系发现,该超细纤维的平均直径随着竹纤维素浓度的增大而增大,随纺丝电压的增大而减小,随纺丝距离的增大而减小,且最佳纺丝参数是竹纤维素质量分数为0.8%,纺丝电压为16 kV,接收距离为14 cm。采用该复合纤维制成夹心净化材料并做过滤测试发现,其过滤效率随着夹心层中超细纤维的膜密度和浊液的起始浊度值增加而增大,最大过滤效率可达99.5%。  相似文献   

8.
利用氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)溶剂体系先后溶解竹纤维素和聚丙烯腈(PAN),配成纺丝液,采用静电纺丝技术成功制备出直径为130 nm~450 nm的竹纤维素/PAN超细纤维。通过研究竹纤维素/PAN超细纤维平均直径与纺丝参数关系发现,该超细纤维的平均直径随着竹纤维素浓度的增大而增大,随纺丝电压的增大而减小,随纺丝距离的增大而减小,且最佳纺丝参数是竹纤维素质量分数为0.8%,纺丝电压为16 kV,接收距离为14 cm。采用该复合纤维制成夹心净化材料并做过滤测试发现,其过滤效率随着夹心层中超细纤维的膜密度和浊液的起始浊度值增加而增大,最大过滤效率可达99.5%。  相似文献   

9.
陈志  罗军  刘佳林  葛明桥 《化工新型材料》2014,(10):202-204,216
采用静电纺丝技术制备了PVP/[Sr(NO3)2+Mg(NO3)2+TEOS+Eu(NO3)2+Dy(NO3)2]复合纳米纤维,研究了不同静电纺丝工艺参数对其成纤性状的影响。结果表明:纤维的直径均随着电压、无机盐和PVP含量的增加呈现先减小后增大的趋势;随着纺丝液中无机盐含量的增加,纺丝液的黏度、表面张力和电导率均逐渐增大;随着PVP含量的增加,纺丝液的黏度、表面张力逐渐增大、电导率先减小后增大。SEM分析表明,当纺丝电压在13~15kV,纺丝液中无机盐含量为5%~6%,PVP含量为15%时,易获得形貌较好的复合纳米纤维。  相似文献   

10.
采用熔融静电纺丝法制备了聚对苯二甲酸乙二酯(PET)超细纤维膜,应用正交试验分析了纺丝主要工艺参数对熔融电纺PET超细纤维直径的影响。实验表明,在本实验装置条件下可实现熔融电纺工艺的有效调控,纤维直径随着纺丝电压的升高呈现下降的趋势;纤维随接收距离的增加和熔体温度的上升均表现为先变细后变粗;喂料气压的增加会增大纤维直径;提高纺丝环境温度至聚合物的玻璃化转变温度,纤维平均直径明显下降。在最佳纺丝工艺条件下(纺丝电压27 kV,接收距离7 cm,熔体温度255℃,环境温度70℃,依靠聚合物自重喂给)制备的PET超细纤维均直径小于1μm。  相似文献   

11.
采用静电纺丝技术制备纳米Ag-聚乙烯醇缩丁醛(PVB)复合纳米纤维,获得一类过滤性能和抗菌性能优异的空气过滤材料。采用TEM分析纳米Ag的形貌,采用SEM、FTIR和XRD等表征手段研究纳米Ag-PVB复合纳米纤维的微观形貌、化学结构以及结晶行为,并对其空气过滤性能、透气性能和抗菌性能进行了研究。结果表明:以乙醇为溶剂,当PVB含量为10wt%、纳米Ag含量为0.25wt%时,得到的纤维尺寸均一,平均直径为542.14 nm。性能测试结果表明,纺丝最佳时间为10 min,纳米Ag-PVB复合纳米纤维对PM2.5过滤效率为99.99%,过滤阻力为16 Pa,透气率为155.0 mm/s,并且对大肠杆菌表现出优异的抗菌性能,其抑菌率为95.52%。  相似文献   

12.
通过制备硬脂酸甲酯/聚对苯二甲酸乙二酯(MES/PET)定型相变复合纤维,研究了MES固-液相变材料和PET支撑材料在定型相变复合纤维中的分布结构。结果表明在静电纺丝过程中MES组分作为分散相被随机地分散在PET纤维基体的连续相中,其在PET纤维中的最大负载量为50wt.%;复合纤维中的MES分子与PET分子之间没有发生化学反应,二者具有良好的相容性;MES/PET定型相变复合纤维的融化和结晶温度分别为39.84℃和27.96℃,融化和结晶焓值达到90.43kJ/kg和88.03kJ/kg;由于PET基体比MES分子具有更好的热稳定性,将PET纤维作为MES固液相变材料的支撑材料,有利于改善定型相变复合纤维的热稳定性;随着MES含量的增加,定型相变复合纤维膜呈现脆性断裂特征,其拉伸断裂强度增加。  相似文献   

13.
利用静电纺丝技术,在粘胶水刺非织造基表面沉积时长分别为9 min、11 min、13 min、17 min、21 min、25 min、29 min,质量分数为13%的醋酸纤维素(CA)载药纳米纤维,药物为没食子酸(GA),再在表层覆盖丙纶纺粘非织造布,作为复合结构防护口罩材料.采用扫描电镜对非织造布及载药纳米纤维膜进行形貌表征,测试其孔径大小及分布,并进行了过滤效率、过滤阻力、抗菌性能测试.结果表明:在实验范围内,纳米纤维连续均匀,负载药物后的纳米纤维比纯CA纳米纤维直径稍粗,但直径更加均匀;随纺丝时间延长,复合结构材料孔径变小、孔径分布更均匀;并且对1μm以下的粒子的过滤效率从24.12%提高到69.76%左右,但对过滤阻力影响不大;复合结构材料对大肠杆菌和金黄色葡萄球菌的抑菌圈宽度分别达到1.40 cm和2.30 cm,具有良好抗菌抑菌性能.  相似文献   

14.
以单硬脂酸甘油酯(GMS)为固液相变材料,以聚对苯二甲酸乙二酯(PET)纤维为支撑材料,通过静电纺丝方法成功制备了新型的GMS/PET定形相变复合纤维。FE-SEM观察显示随着定形相变复合纤维中GMS含量的增加,纤维直径逐渐增大且直径分布更广,纤维交叉点之间也出现粘连。XRD分析结果表明,静电纺丝过程中GMS和PET纤维基体能够很好地结合,由于PET纤维基体的支撑保护作用阻碍了GMS的结晶,导致结晶度下降。DSC分析结果表明,静电纺GMS/PET定形相变复合纤维是一种相变过程完全可逆的储能材料,其相变焓值随着纤维中GMS含量的增加而逐渐增大,相变焓效率85%。在DSC热循环测试过程中定形相变复合纤维的相变温度和相变焓值几乎没有变化,表明了该材料具有良好的热循环稳定性。  相似文献   

15.
为开发高效低阻的空气过滤材料,采用静电纺丝技术制备了聚偏氟乙烯(PVDF)-聚丙烯腈(PAN)复合纳米纤维,并与聚丙烯熔喷非织造布复合制得高效复合过滤材料,研究了PVDF与PAN的质量比对溶液性质、表面形貌、比表面积、透气性和过滤性能的影响。结果表明,当PVDF与PAN质量比为3:5时,其溶液可纺性最好,所得纤维直径均匀,约为0.59 μm;利用BET比表面积分析仪测试可得其比表面积约为PVDF与PAN质量比为2:1时的两倍;利用滤料测试仪对PVDF-PAN/熔喷聚丙烯(PP)无纺布复合滤材的过滤性能进行测试,结果表明,静电纺PVDF-PAN纳米纤维层可显著提高聚丙烯熔喷非织造布的过滤性能,PVDF-PAN/熔喷PP无纺布过滤效率可达99.95%,明显高于熔喷无纺布的过滤效率(65%),过滤阻力为77 mmH2O(1 mmH2O=9.8 Pa),过滤品质因子达0.0987,远高于熔喷无纺布的过滤品质因子0.0168,过滤效果得到显著提升。   相似文献   

16.
静电纺聚乳酸纳米纤维复合滤料的过滤性能研究   总被引:7,自引:0,他引:7  
将聚乳酸颗粒加入到质量比为8:2的三氯甲烷与N-N-二甲基甲酰胺的混合溶剂中,室温下配置质量分数为10%的纺丝液,采用静电纺丝法制备了平均直径在620nm左右的聚乳酸纤维。以聚乳酸熔喷非织造布为基布,通过控制纺丝时间的不同得到了负载不同厚度纳米纤维层的可生物降解的复合过滤材料。通过对各试样的孔隙率、孔径及孔径分布、过滤效率的测试发现:随着纺丝时间的增加,复合材料孔隙率不断下降,孔径不断减小,纺丝3h时,孔径基本减小到原先的一半,且分布相对集中,大大地提高了普通过滤材料的过滤效率。  相似文献   

17.
以湿法无纺布为支撑层、纺粘无纺布为保护层,熔喷静电棉/纳米纤维/超细纳米纤维为核心过滤层,制备出一种具有多级梯度过滤的复合滤材,并讨论了不同选材和工艺参数对滤材性能的影响。SEM分析表明,该滤材呈现明显的梯度尺度结构。过滤测试结果表明,该滤材初始过滤效率达99.65%,且去除静电后仍能保持在90%以上,而滤阻仅有15.7Pa。与传统熔喷滤材相比,该产品显示出优异的高效低阻性能,而且不受静电衰减的影响,大大增加了滤材使用寿命,在空气过滤领域具有广阔的应用前景。  相似文献   

18.
采用多喷头熔体静电纺技术制备聚对苯二甲酸乙二酯(PET)纤维膜,采用正交试验法分析了主要纺丝工艺参数(纺丝电压、纺丝距离、纺丝温度和挤出气压)对所纺纤维直径和单位时间内纤维产量的影响。实验表明,纺丝电压对所纺纤维直径影响较大,电压越大,纤维直径越小,单位时间内纤维产量越大;纺丝距离减小,所纺纤维直径相应减小,单位时间内纤维产量有所提高;纺丝温度对纤维产量和直径影响相对较小;挤出气压对单位时间内纤维产量有显著影响,挤出气压的增大会增加纤维产量,但同时会增大纤维直径。  相似文献   

19.
将聚丙烯腈粉末加入到N,N-二甲基甲酰胺中,制备12%(wt,质量分数)的纺丝液。以聚丙烯熔喷非织造布为基布,通过改变纺丝时间,制得不同厚度的复合滤料。通过扫描电子显微镜观察熔喷布和纳米纤维的外观形貌,并对复合滤料的孔径、孔径分布、过滤效率、透气性进行表征。结果表明:采用静电纺丝的方法纺制了平均直径为220nm的聚丙烯腈纳米纤维。随着纺丝时间的增加,复合滤料的孔径不断减小,过滤效率逐渐提高,透气性下降。当纺丝时间为60min时,复合滤料的孔径尺寸集中分布在2~5μm,对粒径"≥1.0μm2.0μm"颗粒的过滤效率为99.85%,压力降为200Pa,符合医用防护口罩技术要求,过滤性能达到2级。  相似文献   

20.
随着纳米技术的飞速发展,纳米纤维技术已成为纤维科学的前沿和研究热点,并在生物医学、过滤材料、复合增强材料、催化、食品工程等领域得到了广泛应用。本文介绍了静电纺丝技术的发展简史、基本原理、主要装置和基本类型,并综述了利用静电纺丝技术制备的纳米纤维在各领域中的应用,最后讨论了静电纺丝技术制备纳米纤维存在的问题和发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号