首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以晶须状多壁碳纳米管为导电剂,纸纤维为基体,采用高速剪切分散工艺将碳纳米管均匀分散在纸纤维基体中制成碳纳米管纸纤维浆料,经真空抽滤制备碳纳米管导电纸。检测了碳纳米管导电纸的电磁屏蔽性能及电化学性能。研究结果显示,碳纳米管导电纸在300~1500MHz频段,屏蔽效能SE达19~22dB,碳纳米导电纸替代石墨作为锌锰电池的集流体时,锌锰电池的放电能力提高62%。  相似文献   

2.
以电解二氧化锰(EMD)为正极活性材料,多壁碳纳米管(MWCNTs)为导电剂,纸纤维为基体制得复合纸,并将复合纸代替石墨片集流体和正极片应用于柔性锌锰电池。采用扫描电子显微镜对复合纸进行表征,并通过恒流放电测试其放电性能。结果显示,采用复合纸的电池放电比容量是传统锌锰电池的3倍,使EMD利用率从7.4%提高到43.8%,且在较大电流放电和弯曲放电情况下仍能保持明显的放电性能优势。  相似文献   

3.
以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,采用真空抽滤法制得多微孔结构的导电纸。将MWCNTs导电纸作为负极集流体代替铜箔应用于氧化锡锂离子电池。采用场发射扫描电镜(SEM)进行表征。SEM显示,Sn O2均匀地分布在MWCNTs构建的三维导电网络的孔隙中。对循环后的MWCNTs导电纸负载Sn O2极片进行EDS元素分析,结果表明,三维多微孔集流体能充分均匀吸附Sn O2浆料,从而保证基体材料的结构稳定性和化学稳定性。电化学测试表明,MWCNTs导电纸作为负极材料Sn O2的集流体能够有效改善电池性能。在100 m A/g电流密度放电时,60次循环后比容量为580 m Ah/g,逐渐增大电流密度时电池比容量下降较为平缓,库伦效率保持在97%以上。  相似文献   

4.
为了改善锂硫电池的循环性能,以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,采用真空抽滤法制得MWCNTs导电纸,并将MWCNTs导电纸作为正极集流体代替铝箔应用于锂硫电池。对MWCNTs导电纸进行了形貌结构表征和电化学性能测试,并对循环后的MWCNTs导电纸电极进行EDS检测。结果显示,MWCNTs均匀地附着在纸纤维基体上,多空隙的MWCNTs导电纸三维结构明显。采用MWCNTs导电纸作集流体的锂硫电池在0.05C和1C倍率充放电下循环30次,比容量分别保持615mAh/g、496mAh/g,库伦效率达97.5%以上,且电荷转移电阻在循环后降低。EDS元素分析结果证实MWCNTs导电纸对多硫化锂有吸附作用,从而一定程度抑制了锂硫电池的穿梭效应。因此,以MWCNTs导电纸作为集流体能有效增加活性物质硫的负载量和接触面积,使锂硫电池具有良好的循环稳定性和库伦效率性能。  相似文献   

5.
以碳纳米管(Multi-walled carbon nanotubes)为导电剂,协同以碳纳米管和纸纤维复合成的CNTs导电纸为集流体,对石墨负极进行电化学改性。石墨化处理碳纳米管作为负极的添加相,采用XRD、SEM和TGA对其分析。结果表明,对比单纯的石墨/铜箔负极,掺杂0.8%(质量分数)石墨化碳纳米管的石墨/铜箔负极,电池比容量由304mAh/g变为308mAh/g,相差不大,但循环效率由86%升至92%;使用CNTs导电纸做集流体时,掺杂0.8%(质量分数)石墨化碳纳米管的石墨/CNTs导电纸负极,比容量由308mAh/g升至401mAh/g,提高30%,循环效率由92%升至95%,提高3%。说明碳纳米管协同CNTs导电纸对石墨负极具有积极的改性意义。  相似文献   

6.
陈珑  孙晓刚  吴小勇  邱治文  蔡满园 《材料导报》2016,30(Z2):41-44, 48
以碳纳米管导体、纤维素纤维为基体制备碳纳米管导电纸。以此碳纳米管纸为集流体替代铝箔作为集流体组装纽扣电池。三元材料(NMC)为正极活性材料,制成浆料涂敷在碳纳米管纸表面制备成正极。利用Raman光谱、透射电子显微镜(TEM)、扫描电子显微镜(SEM)等进行结构和性能表征。通过恒流充放电检测电化学性能。结果表明:碳纳米管导电纸代替铝箔作集流体,具有更好的电化学性能。在0.1C倍率时,三元/导电纸电极首次放电容量达到184mAh/g,三元/铝箔电极为178mAh/g,相比后者,前者提高了3%,在28次循环后,容量保持率在94%以上。  相似文献   

7.
采用超轻的碳纳米管(Carbon nanotubes,CNTs)宏观膜替代传统的金属铝集流体,替换后的锂离子电池以LiCoO2为活性物质,在1 C条件下电池首次放电比容量为132.8mAh·g-1,500次循环后容量保持率高于80%;当正极材料层面密度为16mg·cm-2时,LiCoO2-CNT电极的能量密度比LiCoO2-Al电极提高25%;同时,CNTs膜作为正极集流体的电池自放电率低于1.5%。该CNTs膜经电流刺激后仍保持较高的石墨化程度,相比金属集流体,其表面束状的多孔结构可有效保证正极材料层和集流体间的紧密接触。该膜有望替代传统铝箔成为新一代锂离子电池用集流体。  相似文献   

8.
研究了碳纳米管掺杂镁锰纸电池的电化学性能。以碳纳米管掺杂MnO2作为正极材料,金属镁为负极材料,组装成薄膜纸电池。分别以绿豆汤、尿液、自来水、3%NaCl和牛奶液体为激活剂,检测电池的放电性能。采用扫描电子显微镜(SEM)分析正极材料结构,采用CT-3008W-5V5mA-S4检测仪测试纸电池的电化学性能。研究结果显示,以绿豆汤为电池激活剂,镁锰电池具有最佳的综合性能,放电容量达到5mAh,放电时间达到600min。  相似文献   

9.
采用磁控溅射技术对碳纳米管膜进行表面金属化处理,制备了导电性能优异的碳纳米管/金属复合薄膜,其电导率为纯碳纳米管膜的10倍(碳纳米管膜电导率为300 S·cm-1)。以这种复合薄膜为集流体组装的柔性锂离子电池,具有比以纯碳纳米管膜作为集流体更优异的倍率性能(5 C倍率下比容量仍可保持132.6 mAh·g-1)、大倍率循环性能(5 C倍率200圈循环后仍具有74.4%的容量保持率)和更大的输出电流(0.4 A)。  相似文献   

10.
李旭  孙晓刚  陈玮  王杰 《复合材料学报》2018,35(11):3219-3226
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。  相似文献   

11.
采用纳米硅和多壁碳纳米管(MWCNTs)复合材料作为活性材料,以纸纤维为基体,MWCNTs为导电剂制得的MWCNTs导电纸代替铜箔集流体应用于硅基锂离子电池。采用扫描电子显微镜、透射电子显微镜、恒流放电测试、电化学阻抗对复合材料的形貌和电化学性能进行分析。结果表明,采用MWCNTs导电纸-纳米硅复合的锂离子电池在80mA/g的电流密度下,循环50次后比容量达到约1000mAh/g,在2000mA/g大电流密度下仍保持好的循环稳定性。  相似文献   

12.
以碳纳米管(Multi-walled carbon nanotubes)为导电添加剂,对锂/氟化石墨(Li/CFx)一次电池正极活性材料氟化石墨进行改性。采用TGA、Raman、SEM、TEM对氟化石墨和碳纳米管进行表征分析。采用恒流放电和电化学阻抗频谱对电池进行检测。结果表明,添加碳纳米管能够有效改善电池的综合性能。碳纳米管添加量为5%(质量分数),在1C放电倍率时,电池的放电比容量达到900mAh/g,并具有2.2V放电电压平台,对比超级炭黑导电剂598.5mAh/g的放电比容量和2V的放电平台,电池放电比容量和电压平台分别提高50.2%和10%,电池的倍率性明显改善。电化学阻抗频谱也显示,添加碳纳米管能有效减小电池的内阻,改善放电性能。  相似文献   

13.
用电化学方法研究了碱性锌锰电池铜集流体上电沉积Zn-In合金的方法,测量了Zn-In合金在7.0mol/L氢氧化钾溶液中的析氢性能以及合金中各组分的含量.结果表明,在硫酸盐体系中Zn-In合金电沉积为异常共沉积.在碱性体系中Zn-In合金具有较高的析氢过电位,可以用作碱锰电池的集流体镀层材料.  相似文献   

14.
电化学储能技术对配置可再生能源和拓展电动器件的广泛使用至关重要。碳纳米集流体具有比表面积高、导电性好、界面可修饰及柔性好等特点,为下一代高比能锂硫电池及目前的锂离子电池和电容器存在的关键科学问题提供了一个良好的研究平台。本文重点对纳米碳基集流体在锂硫电池中的应用及界面作用机理进行了探讨,并介绍了纳米碳基集流体在高比能、高功率锂离子电池和电容器中的作用,最后阐述了纳米碳集流体在这些储能体系中存在的问题及发展空间。  相似文献   

15.
水热合成法制备纳米SnO2-Fe2O3复合材料,以SnO2-Fe2O3为活性物质,多壁碳纳米管(MWCNTs)导电纸代替传统铜箔作为负极集流体制作锂离子电池。采用XRD、SEM进行表征,结果显示,SnO2-Fe2O3均匀嵌入到MWCNTs构建的三维导电网络的空隙中。电化学测试结果表明,SnO2-Fe2O3/MWCNTs导电纸作为负极电极能够显著提高锂离子电池的循坏和倍率性能。在100 mA/g电流密度下循环30次,SnO2-Fe2O3/MWCNTs导电纸电池比容量达到1 088 mAh/g,而在200 mA/g电流密度下循环200次后,SnO2-Fe2O3/MWCNTs导电纸比容量能稳定保持在898 mAh/g,表现出良好的循环性能,逐渐增大充放电电流,电池的比容量有所下降但其库伦效率仍然保持在96%以上,而在高倍率(1 600 mA/g)下进行充放电时,SnO2-Fe2O3/MWCNTs导电纸比容量仍然能够保持在547 mAh/g,之后再将电流密度降到100 mA/g,比容量重新回到1 000 mAh/g,SnO2-Fe2O3/MWCNTs导电纸表现出十分优异的电化学性能。   相似文献   

16.
采用热化学气相沉积技术(CVD),在泡沫镍表面直接生长多壁碳纳米管(MWNT),以此MWNT-泡沫镍基底为电池集流体,并使用该基底、通过干粉末滚压工艺制备镍氢电池电极,对电池进行了一系列的充放电性能测试。实验结果显示,碳纳米管可以从泡沫镍内部直接长出,经过电极制备后,能够穿插到电极活性物质中间,增加活性物质与基底间结合力。这种电极结构可以有效抑制电池在充放电过程中活性物质的脱落、提高电子传输效率,使电池最大放电比容量提高约17.3%。经过200次循环后,电池容量仅仅下降24.4%。  相似文献   

17.
碳作为单一元素可形成像零维碳纳米球、一维碳纳米管、二维石墨烯等多种碳纳米结构,它们在锂离子和锂硫电池中的表现也有所不同。需要阐明的是,碳纳米管和石墨烯由于具有以下缺点不适合直接作为锂离子或锂硫电池电极材料:(1)第一次不可逆容量大,首次充放电效率低;(2)在充放电曲线中电压滞后现象严重;(3)缺少稳定的电压平台;(4)容量衰减快。科学家们一直在为获得具有更高能量密度和更广阔应用前景的锂离子电池和锂硫电池而努力,由于可充电电池的性能主要取决于阴极和阳极的性能,因此,设计先进的电极材料以及制备具有特定成分和结构的电极成为近年来的研究热点。本文综述了碳纳米材料在构建高性能锂离子、锂硫电池电极材料和特定电极方面的作用。首先,从促进电子和离子传输、固定多硫化物位置以及缓冲体积膨胀三个方面讨论了碳纳米材料在修饰电活性材料的作用;其次,从作为导电添加剂、电流集流体和导电中间层三个方面讨论了碳纳米材料在最优化非活性组分的作用;然后,从作为非导电基体上的导电相、柔性电流集流体和自支撑复合电极三个方面讨论了碳纳米材料在柔性电池设计的作用。最后,本文对碳纳米材料的未来发展趋势作了概述,兼具多种功能的碳纳米材料被认为是今后的研究重点。  相似文献   

18.
以超导乙炔炭黑(Sp)为导电添加剂、MnO_2为正极活性材料,将二者和电解液调制成正极活性浆料,并涂覆在浆层纸上制作成电池正极极片,以锌箔为负极组装成纸电池。用SEM表征MnO_2掺杂前后的物相结构,用四探针电阻仪表征极片表面电阻,用CT-3008W-5V5mA-S4电池测试系统检测纸电池放电性能。结果表明,掺杂10%Sp时,正极极片表面电阻由1021Ω/□减小到412Ω/□,降低了60%;以氯化钠水溶液为激活液,纸电池在不同的电流下进行恒流放电检测,当0.1mA恒流放电时,放电时间长达400h以上,并呈现出明显的1.27V电压平台,电池放电容量达40.61mAh。  相似文献   

19.
研究了碳纳米管、石墨、炭黑及其混合材料作为导电剂与纸纤维复合制成导电纸的电磁屏蔽的效能。采用普通造纸法成型导电纸。使用扫描电子显微镜、四探针电阻仪、矢量网络分析仪对其进行表征,其中炭黑导电纸的电磁屏蔽效能最好,屏蔽效能为-28~-35dB。掺杂碳纳米管对石墨的导电性和屏蔽性能改变巨大。在2500MHz以上碳纳米管导电纸屏蔽效能接近并超越炭黑导电纸,表明碳纳米管在高频率情况下表现出更强的屏蔽能力。  相似文献   

20.
采用化学气相沉积法合成晶须状碳纳米管(WMWCNTs)和碳纳米管(MWCNTs)。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)对其进行详细分析。以纸纤维为基体材料,晶须状碳纳米管和碳纳米管为功能材料,通过真空抽滤制得碳(WMWCNTs)/碳(MWCNTs)/纤维素复合纸。采用两电极测试体系,通过循环伏安及恒流充放电方法对其超级电容器性能进行测试。在扫描速率为1mV/s时,碳/碳/纤维素复合纸电极的比容量达到120F/g。在电流密度为0.4A/g时,碳/碳/纤维素复合纸电极比容量值可达51.5F/g。在电流密度为0.4~1.4A/g范围时,最大比能量和比功率分别为63.7Wh/kg和3.99kW/kg,表现出良好的超级电容器性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号