共查询到20条相似文献,搜索用时 0 毫秒
1.
采用移动计算域方法研究0.5 mm毛细管内充分发展的气液Taylor流动换热特性,分析了Taylor气泡的形状、压降与换热特性。结果表明,随着入口Reynolds数Re的增大,气泡尾部的不稳定区域增大,液膜厚度逐渐增大,气泡长度变长;随着气泡体积分数ξg的增大,气泡形状基本不变而长度逐渐增大。阻力因子f随Re、ξg增大而降低,两相阻力系数高于单相的情况。平均Nusselt数Nutp随Re增大而增大,增大趋势逐渐降低;随ξg增大而线性降低。Taylor流的Nutp为单相的1.2~3倍,强化换热效果。 相似文献
2.
采用相对坐标系方法,研究毛细管(d 2mm)内充分发展垂直上升气液Taylor流动,分析两种工作介质下Taylor气泡的形状、上升速度、液膜厚度以及压降特性。结果表明:随着两相表观速度(Vtp)增大,Taylor气泡长度增大,气泡尾部曲率半径增大。气泡长度及内部回流区随着气泡体积分数(ξg)增大而增大,量纲1液膜厚度与气泡上升速度与毛细数(Ca)正相关,模拟结果与经验公式吻合较好。摩擦阻力因子(fc)随Vtp与ξg的增大而降低,N2/乙二醇为工质的Taylor流动fc低于单相情况,而N2/水为工质的Taylor流动fc高于单相情况。Kreutzer等的流型依赖公式以及Lockhart等的分离模型可较好预测本文的两相压降,模拟结果与预测值的误差在±10%以内,常规通道所推荐C 5仍然适用于本文毛细管情况。 相似文献
3.
水-气式管壳换热器内部换热过程是一个复杂物理过程,本文采用计算流体数值方法对换热器内部流动过程和换热过程进行仿真,研究内部流场和温度场分布,结果表明:换热管外流体靠近换热器壁面附近区域流速相对较大,不利于提高换内部区域换热效率,通过数值分析可以预测实际工况下换热器内部物理场相关信息,为换热器后期优化设计工作提供参考。 相似文献
4.
毛细管精馏是一种分离共沸物系的新型分离技术,它利用毛细管的固-液相互作用来改变液体混合物的汽液平衡。毛细管通道内的气液两相流型在低气速时以泰勒流为主,今使用计算流体力学方法,对毛细管内泰勒流的多种影响因素,如:壁面作用、气液速率以及流体物性等进行了研究。首先考察壁面作用的影响,发现壁面粗糙度能改变气液柱形状和流场,粗糙度增大使通道内气液两相流型由泰勒流向泡状流转变,流动状态由层流向涡流转变。模拟不同接触角下的气液流动,发现壁面吸附作用在一定程度上影响气液柱长度和气液界面间的形状。通过模拟不同气液速率下的气液流动,观察气液柱长度与气液速率之间的关系。对模拟气液柱长度进行量纲分析,得到了泰勒流的气液柱长度的关联式,将该式与文献测定值进行比较,发现在一定范围内吻合较好。 相似文献
5.
6.
微细通道内Taylor流动广泛应用于能源化工领域,为分析其相界面及阻力特性,利用相对坐标系的方法,研究了竖直圆管及扁平管内的液-液Taylor流动,讨论了通道宽高比、Reynolds数(Re)及分散相体积分数对液膜厚度和两相压降的影响。结果表明:圆管内液滴头部和尾部可以膨胀至近似球形,而扁平管内壁面的限制作用较强,液滴呈现扁平状。随Reynolds数增大,两相界面逐渐收缩,液膜厚度逐渐上升。圆管内液膜厚度比较均匀,扁平管内液膜在通道顶部较薄,而圆弧部分较厚。两相压降随Re和宽高比的增大而增大,随分散相体积分数的增大而降低。相比连续相和分散相压降,界面压降所占的比重最高,并依据模拟结果,提出了圆管及扁平管内液-液Taylor流动的压降预测公式。 相似文献
7.
8.
方形截面螺旋管内气液两相流动特性数值研究 总被引:3,自引:3,他引:0
采用CLSVOF多相流模型,结合标准k-ε湍流模型方程,对方形截面螺旋管内气液两相流动特性进行数值模拟,绘制了几种典型流型的流型图,并与相关文献中的实验结果进行对比;分析了截面含气率沿管圈周向的分布规律和平均截面含气率与容积含气率的关系;探究了不同流型压降的变化规律和湍流耗散率沿程变化规律;讨论了螺旋管不同壁面的表面摩擦系数与剪切应力的差异。 相似文献
9.
循环旋风分离器内气液两相流动数值模拟 总被引:2,自引:1,他引:2
采用雷诺应力模型RSM对循环旋风分离器内气液两相流动的情况进行了数值模拟研究,讨论了循环旋风分离器内切向速度、轴向速度、径向速度、压力场、雷诺应力的分布特点以及相同入口速度下分离器内液滴运动轨迹与分离器的分离效率。数值模拟结果表明,循环旋风分离器切向速度呈现明显的驼峰状,轴向速度上行流和下行流明显,径向速度相对较小,压力由轴心向外逐渐升高,雷诺应力分布复杂且无明显规律,分离器对小直径液滴分离效率较低,入口速度对分离效率的影响比较明显。 相似文献
10.
11.
实验研究了圆形微小通道内液-液两相流的流动和换热特性。选用去离子水为分散相,高黏度二甲基硅油为连续相。通过处理高速摄像所拍摄的可视化图像,总结了液-液两相流流型和液滴的长度/形状特征。并在此基础上考察了低Reynolds数下液-液弹状流对微小通道的换热作用。结果表明,平均Nusselt数随着Reynolds数的增加而增加,且油水比越大传热系数增加幅度越明显。Nu随着含水率的增加而降低。虽然含水率增加会使两相平均热容量提高,但在低Reynolds数下,这种提高被其长液滴内较弱的循环强度所抵消。选用三种不同形式接头在相同混合速度和含水率的情况下生成不同长度的液滴,发现短液滴更有利于换热。相同工况下,液滴长度的优化可以使整体传热系数提高近26%。 相似文献
12.
以某液氧煤油火箭发动机冷却系统设计计算为基础,基于计算流体力学(CFD),并采用三维流固耦合算法对以水作为第三流体的冷却循环系统进行了计算和分析。比较了冷却剂入口温度、流量和冷却通道内压力损失等因素对冷却通道内流动换热的影响。结果表明:冷却剂流量增加0.01kg/s,推力室壁面整体温度和喉部温度降低分别降低9K和15K左右,冷却剂出口干度降低0.011左右;当冷却剂流量较低时,入口温度变化对换热效果几乎无影响,而当冷却剂流量较高时,入口温度每增加10K,冷却剂出口干度增加0.009左右;冷却剂流量每增加0.01kg/s会导致冷却通道压力损失增加54kPa左右;入口温度每增加10K,冷却通道压力损失将减少24kPa左右。由此,本文得出冷却剂流量的最佳范围12~14.4kg/s,入口温度的范围为300~350K。 相似文献
13.
结合湿法除尘及挡板绕流技术,本文设计开发了一种带有挡板结构的新型湿法除尘系统。为探究该系统内挡板结构诱导产生的涡旋流动特性及其内部离散相运动规律,基于计算流体力学(CFD)方法,文章选用重整规划群(RNG)k-ε湍流模型数值对比了不同挡板参数下的涡旋结构、速度分布及压降情况等气相流场特性。同时利用离散相模型(DPM)分析了不同工况下喷淋液滴的运动轨迹、逃逸率及驻留时间表现。结果表明,集尘区内弓形挡板的设置可诱导产生涡旋流动,不仅能够抑制低速“流动死区”,同时还可不同程度改善喷淋液滴逃逸情况、有效延长其在装置内的驻留时间。综合考虑气相入口速度v、挡板安放角θ及喷淋液滴粒径Dp的影响,文章推导获得了液滴逃逸率的计算公式,可较为准确地预测喷淋液滴的运动情况。 相似文献
14.
15.
以CO2-H2O为模型体系,实验考察了当量直径为667 μm的单通道和16个并行通道内的气-液传质行为.实验发现,液体表观速度增加,单通道内液侧体积传质系数明显提高;同一液体表观速度下,液侧体积传质系数随气体表观速度增加而增加;在实验数据基础上关联了液侧体积传质系数与气-液两相流参数间的关系.微通道内的液侧体积传质系数较常规尺度气-液接触设备至少高1~2个数量级.并讨论了并行微通道内气-液两相流分配特性对整体传质性能的影响,表明合理设计气、液流动分布结构,可保证微通道内优异的传质特性. 相似文献
16.
气-液旋流分离器流场数值模拟研究 总被引:1,自引:0,他引:1
为研究旋流分离器内部气体和液滴的运动情况和分离机理,用流体动力学软件Fluent对旋流分离器内部流场和液滴的运动状况进行了数值模拟研究,在模拟过程中,采用k-epsilon(2 eqn)方程来模拟气相旋流流动,采用Lagrange方法模拟液滴运动。模拟结果表明,旋流分离器内部流场呈旋转分布,分为内、外两个流场,在不同流动区域,气体压力场、速度场分布成规则变化;液滴的运动较为复杂,带有随机性;总体运动轨迹的形状与气相流场的分布趋于一致。 相似文献
17.
采用高速摄像法测量了0.20 m×0.02 m×2.00 m拟二维床内气泡尺寸分布和流型等变化规律,结果表明,随着表观气速的增大,鼓泡床内依次呈现均匀鼓泡区、过渡区和湍动区3种形式,以气泡个数概率表示的气泡尺寸分布呈对数正态分布。以计算流体力学软件ANSYS CFX 10.0为平台,采用k-ε湍流模型和GRACE曳力模型对气液鼓泡床内流体动力学行为展开了数值模拟,其结果与实验值比较吻合。研究表明,从多相流理论出发的计算流体力学模拟方法可以用来预报鼓泡床内流型过渡等流体动力学特性。 相似文献
18.
19.
气-液弹状流,又称Taylor流,是一种以长气泡和液弹交替形式流动的流动形态。微通道内气-液弹状流因其气泡与液弹尺寸分布均一、停留时间分布窄、径向混合强等优点,是一种适于强化气-液反应的理想流型。本文首先介绍了微通道内气泡的生成机理、气泡和液弹长度,以及气泡生成阶段的传质特征。其次系统综述了主通道中弹状流动及传质过程的研究进展,包括气泡形状与液膜厚度、液弹内循环和泄漏流特征、气-液传质系数的测量与预测,以及物理与化学吸收过程中的传质特性等方面内容。最后阐述了当前研究的不足并展望了气-液弹状流的研究方向。 相似文献
20.
提升管内气固流动行为的数值模拟 总被引:3,自引:0,他引:3
应用计算流体力学软件Fluent,对空气为连续相、固相为催化裂化反应催化剂的循环流化床提升管内的气固流动行为进行模拟。采用用户自定义函数引入颗粒与壁面的恢复系数和颗粒的镜面反射系数,对颗粒在边壁处的部分滑移运动进行描述。采用不同的计算动力学模型及参数,数值模拟了径向颗粒浓度、轴向床层压降的空间分布,以及用以描述颗粒脉动动能的颗粒温度与固含率的关系,并与文献报道的实验和数值模拟结果进行对比分析。结果表明,选取的颗粒动力学理论模型及参数、颗粒部分滑移边界条件及气固曳力模型,可计算得到合理的颗粒轴向及径向分布,验证了提升管中存在典型的径向环核流动结构和轴向压降分布。进一步分析表明固含率显著影响颗粒温度,当固含率为0.05~0.1,颗粒温度存在转折区。 相似文献