首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《应用化工》2016,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr~(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr~(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr~(6+)浓度高这一水质特色,先用Fe~(2+)还原Cr~(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe~(2+)、Fe~(3+)、Cr~(3+)、Cr~(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr~(6+)、COD和总铬的同步去除。  相似文献   

2.
利用芬顿氧化法对以氨三乙酸和乙二胺四乙酸为配位剂、总镉浓度为30 mg/L的电镀镉废水进行处理。研究了H_2O_2/Fe~(2+)摩尔比,初始p H,H_2O_2投加量,以及反应温度和时间对镉残余质量浓度与去除率的影响。结果表明,当H_2O_2投加量为0.97 g/L,H_2O_2/Fe~(2+)摩尔比为1∶4,初始pH为3时,在20°C下反应20 min后加碱沉淀并过滤,滤液中残余镉的质量浓度为1.31 mg/L,镉的去除率达到95.6%。  相似文献   

3.
引入二硫化钼作为助催化剂用于电Fenton体系中,通过改变反应条件,包括pH、助催化剂投加量、H_2O_2浓度、FeSO_4·7H_2O浓度,进一步探索该Fenton氧化的工艺条件。结果表明,当目标污染物甲基橙为30 mg/L,电压为10 V,电流为0.04 A,H_2O_2浓度为1.11 mg/mL,FeSO_4·7H_2O为20 mg/L,控制pH在3~4之间,MoS_2的浓度为0.1 g/L时,甲基橙在30 min之内的去除率可达83.9%。进一步推测其机理主要是由于金属硫化物表面的不饱和的S原子可以捕获溶液中的质子形成H_2S,同时暴露出具有还原活性的金属活性位点,从而加快了Fe~(3+)/Fe~(2+)转换,二硫化钼作为一种助催化剂应用到Fenton反应中具有较大潜力。  相似文献   

4.
以硫酸亚铁与氢氧化钠反应生成氧化铁黄313晶种的工艺条件为基础,考察了反应温度、硫酸亚铁与氢氧化钠的物质的量比、初始Fe~(2+)质量浓度、通气速率、反应时间以及反应过程中补水对氧化铁黄晶种质量的影响,并对实验产物进行X射线衍射(XRD)、扫描电子显微镜(SEM)和粒径表征,从而优化工艺。结果表明:在30℃,初始Fe~(2+)质量浓度为0.38 g/mL,硫酸亚铁与氢氧化钠的物质的量比为0.38,初始通气速率为2 L/min、补加水后改为4 L/min的条件下,所制得的铁黄晶种呈土黄色,物相组成为α-FeOOH,粒径均一性较好且形貌为针状。该研究为后期得到质量较优的铁黄成品奠定了基础。  相似文献   

5.
在由300 g/L NiSO_4·6H_2O、40 g/L NiCl_2·6H_2O、0.75 g/L FeSO_4·7H_2O、30 g/L H_3BO_3、8 mg/L十二烷基磺酸钠组成的Ni–Fe合金电镀液(pH=4.2)中,研究了氨基乙酸(0.00~0.60 g/L)对其稳定性及从中所得镀层性能的影响。结果表明,氨基乙酸可与Fe~(2+)配位,抑制Fe~(2+)的氧化,提高镀液稳定性。当氨基乙酸质量浓度为0.20 g/L时,镀液的稳定性最好,镀层的耐蚀性较好。  相似文献   

6.
研究了芬顿法对水中偶氮染料茜素红氧化降解过程。考察了溶液的pH值、不同H_2O_2/Fe~(2+)摩尔比、H_2O_2/Fe~(2+)投加量、染料初始浓度对茜素红降解效果的影响。结果表明:茜素红初始浓度为20 mg/L,在pH值为3、H_2O_2和Fe~(2+)投加量分别为0.5 mmol/L和0.1 mmol/L的最佳条件下,反应30 min后茜素红的降解率达到最大值65.48%。Cl~-对茜素红在芬顿体系中的降解表现明显的抑制作用,SO_4~(2-)和NO_3~-的存在降低了芬顿试剂的氧化性能,也阻碍了茜素红的降解。  相似文献   

7.
以FeSO_4为活化剂,采用Na_2S_2O_8/H_2O_2耦合高级氧化体系处理垃圾渗滤液生化尾水。借助响应面法BoxBehnken设计分析Fe SO_4·7H_2O、Na_2S_2O_8、H_2O_2投加量等因素对COD_(Cr)去除率的影响。研究结果显示:Fe~(2+)对COD_(Cr)去除效果影响显著,Na_2S_2O_8与H_2O_2两者之间有显著的交互影响,Na_2S_2O_8/H_2O_2体系产生协同效应,有效提高了COD_(Cr)去除率。在Fe SO_4·7H_2O投加量为2 g/L,Na_2S_2O_8投加量为1.75 g/L,H_2O_2投加量为3 m L/L的条件下,渗滤液尾水COD_(Cr)去除率达到70%以上。  相似文献   

8.
《应用化工》2022,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr(6+)浓度高这一水质特色,先用Fe(6+)浓度高这一水质特色,先用Fe(2+)还原Cr(2+)还原Cr(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe(2+)、Fe(2+)、Fe(3+)、Cr(3+)、Cr(3+)、Cr(3+)、Cr(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr(6+)、COD和总铬的同步去除。  相似文献   

9.
采用Fenton法处理配位含镍废水,并研究了反应温度、废水初始pH值、H_2O_2的质量浓度、FeSO_4·7H_2O与H_2O_2的质量比、初始EDTA的质量对废水处理效果的影响。结果表明:在反应温度为45℃、反应时间为45 min、初始pH值为3、H_2O_2的质量浓度为10g/L、FeSO_4·7H_2O与H_2O_2的质量比为0.06的条件下,含镍废水中Ni~(2+)的去除率达到94.14%。  相似文献   

10.
Fenton法处理DDNP废水的实验研究   总被引:2,自引:0,他引:2  
采用Fenton法处理DDNP废水,考察H_2O_2与FeSO_4的体积比、试剂总投加量、pH、反应时间等因素对去除效果的影响.实验结果表明,pH为6,质量分数为30%的H_2O_2投加量为40 mL/L左右、Fe~(2+)投加质量浓度为4.56 g/L,振荡1.5 h,COD_(Cr)去除率可达94.78%,色度去除率可达94.38%.  相似文献   

11.
研究了抗坏血酸对硫酸盐体系电镀Ni–Fe合金镀液稳定性的影响,镀液(pH=4.2)组成为:NiSO_4·6H_2O 300 g/L,NiCl_2·6H_2O40 g/L,FeSO_4·7H_2O 0.75 g/L,H_3BO_3 30 g/L,十二烷基磺酸钠8 mg/L,抗坏血酸0.00~0.15 g/L。结果表明,抗坏血酸可抑制镀液中Fe~(2+)的氧化。当抗坏血酸质量浓度为0.10 g/L时,镀液的稳定性最好,镀层的耐蚀性得到提高。  相似文献   

12.
本文采用Fenton试剂对钕铁硼废料回收废水处理进行试验研究,试验研究了不同初始pH、不同反应时间、不同FeSO_4·7H_2O投加量以及不同H_2O_2/投加量对CODcr去除率的影响,试验研究表明在pH为3-5、反应时间为2h、FeSO_4·7H_2O投加量0.006mol/L,H_2O_2投加量为2mL/L时,废水CODcr去除率可以达到70%以上。由于废水的酸度和Fe2+浓度非常大,采用将废水进行加碱混凝沉淀的方法可以去除废水中大部分可沉淀的阳离子和胶体态的有机物,减轻后续Fenton氧化的压力。  相似文献   

13.
采用Fenton-铁氧体法处理含铜模拟废水。在pH值3.0、温度40℃、反应时间10 min、H_2O_20.60mL/L、FeSO_4·7H_2O 7.08g/L的条件下,Cu~(2+)的去除率达到92.88%,残余Cu~(2+)的质量浓度为3.56 mg/L。铁氧体法的最优工艺条件为:沉淀pH值10.0,反应时间15 min,温度30℃,FeSO_4·7H_2O 0.154g/L,FeCl_3·6H_2O 0.225g/L。在Fenton-铁氧体法的优化条件下,Cu~(2+)的去除率达到98.28%,残余Cu~(2+)的质量浓度为0.86mg/L,达到排放标准。  相似文献   

14.
引入二硫化钼作为助催化剂用于电Fenton体系中,通过改变反应条件,包括pH、助催化剂投加量、H_2O_2浓度、FeSO_4·7H_2O浓度,进一步探索该Fenton氧化的工艺条件。结果表明,当目标污染物甲基橙为30 mg/L,电压为10 V,电流为0.04 A,H_2O_2浓度为1.11 mg/mL,FeSO_4·7H_2O为20 mg/L,控制pH在3~4之间,MoS_2的浓度为0.1 g/L时,甲基橙在30 min之内的去除率可达83.9%。进一步推测其机理主要是由于金属硫化物表面的不饱和的S原子可以捕获溶液中的质子形成H_2S,同时暴露出具有还原活性的金属活性位点,从而加快了Fe(3+)/Fe(3+)/Fe(2+)转换,二硫化钼作为一种助催化剂应用到Fenton反应中具有较大潜力。  相似文献   

15.
硫铁矿烧渣制取FeSO4·7H2O研究   总被引:6,自引:0,他引:6  
在实验室中进行了硫铁矿烧渣制职FeSO_4·7H_2O的研究,本法是先将原科还原处理,便Fe~(8+)转化成Fe~(2+),再用废硫酸浸取,浸取液经过滤、结晶,干燥后得到FeSO_4·7H_2O。本法浸取率高,成本低。  相似文献   

16.
Fenton氧化法是处理难生物降解的苯胺废水的有效方法。本文以苯胺去除率和COD去除率为指标,采用控制变量法探究Fe~(2+)投加量、H_2O_2投加量以及pH值等因素对Fenton试剂处理模拟苯胺废水的处理效果,分析Fenton试剂降解苯胺的机理。研究结果表明,对于浓度为10μg/mL的模拟苯胺废水,当0.5mol/L的FeSO_4溶液投加量为2.5mL、30%H_2O_2溶液投加量为1.5mL(Fe~(2+)与H_2O_2物质的量比约为10∶1),溶液pH值为3.0左右时,苯胺去除率可达到88%;在投加溶液稀释相同的倍数情况下,相应COD去除率可达到68%,为后续的生化处理提供有效条件。  相似文献   

17.
Fenton试剂处理抗生素厌氧处理出水的试验研究   总被引:5,自引:2,他引:3  
采用Fenton试刺处理经厌氧处理后的抗生素废水,通过正交试验确定其主要影响因素的最佳水平组合为:FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中),进水pH为3.0,[H_2O_2]:[Fe~(2+)]为12:1,反应时间为2h.在正交试验基础上,通过单因子分析确定了系统的最佳运行条件.在FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中)、进水pH为3.0、[H_2O_2]:[Fe~(2+)]为8:1、反应时间为2h的条件下,对COD的去除率可以达到72%,处理出水BOD_5/COD为0.45.  相似文献   

18.
《广东化工》2021,48(3)
本研究采用芬顿试剂对偏光片生产加工行业聚乙烯醇废水进行处理,对影响处理效果的各种影响因素进行单因素实验。最佳运行条件为在初始反应pH=3的条件下,反应时间120 min,H_2O_2的投加量为5 g/L,FeSO_4·7H_2O的投加量为2.5 g/L,CODcr去除率高达99.1%,故Fenton试剂法是一种高效地用于处理偏光片生产加工行业聚乙烯醇废水的处理工艺。  相似文献   

19.
目前,企业采用高锰酸钾氧化法处理酚醛树脂废水,效果不佳,不但引入了重金属锰元素,造成锰的二次污染,还受温度影响大,冬季氧化能力较差。且高锰酸钾价格昂贵,处理成本较高。为此,本文探讨了采用电Fenton法处理企业高浓度酚醛树脂废水,并对影响COD及除率的各种因素,包括初始电压值、FeSO_4·7H_2O投加量、H2O2投加量等进行了研究。结果表明,电Fenton的最优条件为pH4~5,FeSO_4·7H_2O为2g/L,30%H2O2为1g/L,电压为3V。反应时间为30min。COD去除率可达63%以上。  相似文献   

20.
采用Fenton氧化法对高浓度废乳化液处理进行了研究,基于Box-Behnken响应面法,考察了初始pH、FeSO_4·7H_2O加入量、H_2O_2加入量的单独作用和交叉作用,并建立了COD去除率数学模型,结果表明:影响因子显著性FeSO_4·7H_2O加入量初始pHH_2O_2加入量,初始pH与H_2O_2加入量的交叉作用显著;数学模型回归性较好,预测最佳COD去除率为89.46%。确定了Fenton氧化最佳条件为:初始pH为4.1,FeSO_4·7H_2O加入量为22 mmol/L,H_2O_2加入量为636 mmol/L,验证试验结果为89.11%,与拟合的二次回归模型预测值基本相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号