首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了影响锂硫电池实用化的瓶颈问题,如硫利用率低、不可逆Li2S形成、硫正极结构不稳定等;综述了性能改善方案,如硫正极改性、S/C复合、合适的粘结剂、胶体电解质及锂负极保护等;最后提出了今后重点研究的方向.  相似文献   

2.
采用乙炔黑、土状石墨、Cabot Vulcan XC-72炭黑、Cabot Bp2000超级导电炭黑作为硫载体制备了一系列含硫复合材料。通过X射线粉末晶体衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析(BET)等分析测试手段对材料的物理性能进行表征,利用电池测试系统对材料的电化学性能进行了测试。结果表明基体材料表面结构、孔径分布及比表面积等因素都对复合材料的电化学性能造成影响,综合性能最好的基体材料为BP2000超级导电炭黑,其初始放电比容量高达1385.1mAh/g,在室温下经过30次循环之后电池放电比容量仍保持在1080.2mAh/g,容量保持率高达78%。  相似文献   

3.
采用浓硝酸蒸汽改性乙炔黑(H-AB)表面,再将其与升华硫(S)通过热处理法复合制备S/H-AB复合材料。X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附仪测试结果表明,经过浓硝酸蒸汽改性后,乙炔黑不仅在表面引入羧基官能团,且孔径和比表面积均增大,硫均匀地包覆于乙炔黑表面及内部。电化学测试结果表明,通过在H-AB纳米微粒表面引入羧基强亲水性官能团,固定单质硫及多硫化锂,有效减少穿梭效应的发生,同时减小了活性物质与电解液的接触阻抗,改善硫电极的循环稳定性,提高活性物质硫的利用率。S/H-AB复合正极的放电比容量和循环性能明显优于S/AB,经过100周循环后,其放电比容量仍保持为563 m Ah·g~(-1),远高于未经改性乙炔黑S/AB复合正极的放电比容量(406. 9 m Ah·g~(-1))。  相似文献   

4.
炭黑具有良好的导电性、价格较低、来源稳定、可大量制备等优点,可有效提高硫正极材料的导电性,改善电极的动力学性能.二维层状结构的二硫化钼(MoS2)因其含有的金属-硫键可以与多硫化物通过静电作用或化学键作用结合,从而可以有效地抑制锂硫电池存在的穿梭效应,提高锂硫电池的倍率性能.本文采用球磨法和水热法制备了硫/炭黑复合材料...  相似文献   

5.
以固体废弃物豆渣为原料,采用化学活化法制备了不同孔结构的活性炭,并以活化后的碳材料负载硫作为锂硫电池的正极材料。采用X射线衍射、扫描电镜、热重和比表面分析仪对复合材料进行结构、形貌和孔径分析,通过充放电性能测试对锂硫电池进行电化学性能分析。电化学测试结果表明,DZC/S-5复合材料在0.1C电流密度下首次放电比容量可达1 238.9mA/h,经过100次循环后,比容量保持了871.3mAh/g,平均每循环仅衰减了0.29%,库伦效率约95%,表现了最佳的电化学性能。  相似文献   

6.
采用球磨混合及热复合法制备硫/BP2000复合正极材料(含硫量42%(质量分数)),分别以PTFE、明胶和PEO作为粘结剂,考察了不同粘结剂对锂-硫电池电化学性能的影响。采用热重分析(TGA)、X射线衍射(XRD)、循环伏安法(CV)和恒流充放电表征其物化性能和电化学性能。结果表明,明胶和PTFE对于提高硫正极的电化学性能和维持硫正极的循环稳定性具有积极意义。其中,在0.2 C充放电时,PTFE作粘结剂的电池循环50次后比容量保持741.2 mAh/g,明胶作粘结剂的电池循环50次后放电比容量保持788 mAh/g(按单质硫的质量计算)。  相似文献   

7.
目前,就动力电池能量密度而言,从镍氢电池的80Wh/kg到锂离子电池的150Wh/kg[1],再到锂离子聚合物电池的180Wh/kg,科学家不断地把电池的能量密度推向更高的水平。在锂离子电池体系中,正极材料的比容量很大程度上决定了电池的能量密度。从正极材料的比容量(见表1)来看,目前常规锂离子电池体系的能量密度已经很难继续提高。因此,迫切需要开发更高能量密度的新型电  相似文献   

8.
以Ce(OH)4为原料, 采用热分解法制备得到粒径小于10 nm的CeO2纳米晶。制备得到的CeO2纳米晶表面存在丰富的羟基和硝基, 作为硫正极添加剂, 一方面可以有效吸附硫和多硫化锂, 抑制多硫化锂在电解液中的溶解和穿梭效应的发生, 进而提高电池的循环性能。同时, 可以改善电极和电解液之间的接触性, 提高活性物质利用率。其中, 含有5wt%的CeO2纳米晶的锂硫电池在0.1C和0.5C(1C=1675 mA/g)的充放电倍率下, 100周之后放电比容量分别达750 mAh/g和598 mAh/g, 远高于不含有CeO2纳米晶的523 mAh/g和395 mAh/g, 同时, 循环前后的电池阻抗也明显降低。  相似文献   

9.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg~(-1))远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。  相似文献   

10.
详细地讨论了锂硫电池正极电化学反应机理,论述了利用紫外-可见光谱(UV-vis)、高效液相色谱(HPLC)和液相色谱-质谱联用(LS-MS)多种测试手段对电极反应过程的研究进展,分析了导致锂硫电池循环可逆性差的因素,并对其商业化应用进行了展望。  相似文献   

11.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响.开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题.由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础.锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用.近年来,锂离子电池开始在电动汽车等动力电池领域得到应用.但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高.由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2600 Wh·kg-1)远高于目前广泛使用的锂离子电池.此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点.因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一.硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离.迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面.相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等.此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附.将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能.本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望.  相似文献   

12.
提出以导电多孔兰尼镍(RNi)为锂硫电池中单质S的新载体材料,探究了S/RNi复合材料在溶剂法、研磨高温法及球磨高温法下的电化学性能差异。结果表明,溶剂法制备的S/RNi复合材料的电化学性能最好。预处理后的RNi为海绵状的导电多孔结构,孔径分布在12.5~50 nm之间。SEM和XRD表明,溶剂法制备的S/RNi复合材料具备良好的孔结构,单质S颗粒较小,均匀分布在深层孔结构中,S与RNi充分接触。其首次放电比容量达到1 479 mAh/g,经过200次充放电循环后放电比容量保持在765 mAh/g,库伦效率约为99%。其循环性能也优于传统S/C复合材料。溶剂法制备的S/RNi复合材料的循环稳定性和高倍率性能得益于RNi的导电性及对单质S的物理和化学吸附。  相似文献   

13.
<正>随着移动通讯、便携式电子设备、空间技术和电动汽车等领域的迅速发展,以及人们节能环保意识的不断提高,发展具有更高比能量、更长循环寿命、低成本和绿色环保的新型锂离子电池具有十分重要的意义[1]。相对其他锂离子二次电池,锂硫二次电池在能量密度方面具有较为明显的优势,理论值可达2600Wh/kg,实际能量密度也达到了730Wh/kg左右[2]。此外,单质硫储量丰富、成本低廉、对环境友好、在安全性能方面也具有明显优势,  相似文献   

14.
采用分段加热法合成了不同管径、不同硫含量的单质硫-多壁碳纳米管(S-MWCNT)复合材料,利用电化学方法、SEM、TEM、比表面吸附等分析方法,筛选出以10~20 nm直径的MWCNT为核,质量分数85%硫为壳的最优化条件下的复合材料。SEM测试显示单质硫均匀填充到MWCNT的中空管和层间的孔中形成了结构稳定的复合物。在最优化的条件下,复合材料首次放电比容量达1 272.8 mAh·g-1,活性物质利用率为76.0%,循环至第80周时放电容量还保持在720.1 mAh·g-1,容量保持率高达64.4%。与未添加MWCNT的单质硫电极相比,硫复合电极活性物质的利用率和循环性能都得到了较大的改善。  相似文献   

15.
郭雅芳  肖剑荣  侯永宣  齐孟  蒋爱华 《材料导报》2018,32(7):1073-1078, 1083
锂硫电池因高比容量和高能量密度引起了研究者们的广泛关注,成为新型锂电池研究热点之一。隔膜作为锂硫电池的重要组成部分,是提高电池各方面性能的关键。现阶段锂硫电池隔膜改性工作主要集中于高性能涂层材料的设计与合成以及新型隔膜材料的开发。本文综述了锂硫电池隔膜改性的研究现状,分别从碳涂层隔膜、元素掺杂碳涂层隔膜、金属氧化物/碳复合涂层隔膜、新型薄膜材料和多层隔膜等五个方面进行介绍,指出了从隔膜入手提高导电性、抑制穿梭效应、减轻锂电极腐蚀,从而提高电池电化学性能的重要性。  相似文献   

16.
锂硫电池作为一种新型储能体系,具有高比容量(1 675mAh/g、高能量密度(2 500Wh/kg)以及原材料价格低廉、对环境友好等优势,研究其在电动汽车、无人机、便携式电子设备和智能电网等领域的应用具有重要意义.但锂硫电池的产业化道路仍面临重重阻碍,硫及其还原产物的绝缘性、多硫化物的穿梭效应和锂枝晶等严重影响了电池的...  相似文献   

17.
杜宗玺  汪滨  华超  杜嬛 《功能材料》2021,52(2):2050-2056
锂硫电池存在正极活性材料导电性差、穿梭效应、锂枝晶生长等一系列问题,限制了其商业化发展.本文阐明了锂硫电池的工作原理和性能缺陷,介绍了隔膜改性的研究现状,从功能改性材料和静电纺丝生产工艺两方面总结了隔膜改性的主要思路和作用机理.  相似文献   

18.
能源领域未来发展趋势着重于绿色清洁能源,锂硫电池以其高比能量以及成本低廉等优点,成为电池研究中的新热点。然而,目前锂硫电池仍存在较多问题阻碍其商业化,如正极材料硫导电性能差、正极产物多硫化物的穿梭效应、在充放电过程中,电池内部电极表现出体积膨胀等。本研究综述了近年来锂硫电池正极材料的研究进展,主要讨论了金属有机骨架化合物、碳材料以及导电聚合物在锂硫电池正极材料中的应用,并对锂硫电池正极材料的发展进行了展望。  相似文献   

19.
锂硫电池具有很高的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是最具前景的新型电池之一。石墨烯具有优良的导电性和电化学性能,具有开阔的负载硫的表面和空间,是导电性差的硫黄和硫化锂的良好载体,为锂硫电池正极材料提供了新的研发平台。本文介绍了近年来石墨烯及其复合材料应用于锂硫电池中的研究进展,包括石墨烯或氧化石墨烯负载硫、杂原子掺杂石墨烯负载硫、石墨烯三维网格负载硫和石墨烯-多孔炭复合炭材料负载硫等4种石墨烯基-硫正极材料,概述了其锂硫电池的比容量、倍率性能和循环寿命等性能指标。从石墨烯基锂硫电池正极材料的设计和合成的角度,总结了不同微结构特征的石墨烯及其复合材料组装成锂硫电池的性能特点,并分析了材料组成和微结构对电池性能的影响机制。在总结的基础上展望了石墨烯应用于锂硫电池的发展方向。  相似文献   

20.
采用磷酸铁锂—石墨作为正负极材料制备超大容量叠片式单体电池(200Ah),分析两种不同化成工艺对锂离子电池性能的影响。分析了不同化成工艺后对应的电池负极的表面情况、电池内阻大小以及单体电池放电容量和循环性能等。结果显示,适当降低充电电压,有利于负极表面SEI膜的形成,并且形成的负极极片表面光滑,制备的电池具有更好的化成性能和循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号