共查询到20条相似文献,搜索用时 15 毫秒
1.
简要介绍了六氯环三磷腈的结构和理化性质,研究了五氯化磷与氯化铵反应生成六氯环三磷腈的反应机理,概述了六氯环三磷腈的合成方法以及本课题组的合成进展,综述了其在阻燃领域的应用进展,最后指出了六氯环三磷腈在我国工业化生产中存在的问题和解决途径。 相似文献
2.
六氯环三磷腈对大豆蛋白纤维的阻燃 总被引:3,自引:0,他引:3
用六氯环三磷腈作为阻燃剂对大豆蛋白纤维及其与棉纤维的混纺纤维进行了阻燃处理,并用极限氧指数(LO I)、剩炭率、热分析和扫描电子显微镜研究了它们的阻燃性能和热性能。结果表明,与未经阻燃处理的纤维相比,阻燃处理后的纤维在物理力学性能没有减弱的情况下,极限氧指数和剩炭率提高,阻燃性能明显改进。 相似文献
3.
通过极限氧指数测定,垂直燃烧试验和锥形量热分析研究了三聚氰胺改性聚氨基环三磷腈(MPHACTPA)对改性脂肪胺固化环氧树脂(E-44/DG593)的阻燃作用,并与聚氨基环三磷腈(PHACTPA)进行了比较。结果表明,PHACTPA和MPHACTPA对E-44/DG593均有较好的阻燃作用。三聚氰胺与六氯环三磷腈的摩尔比对MPHACTPA的阻燃作用有些影响,当两者的摩尔比为1.5∶1(MPHACTPA-2)时,其阻燃作用最好。锥形量热试验残余物分析结果表明:PHACTPA和MPHACTPA在燃烧过程中受热分解成磷酸、偏磷酸、聚磷酸等,这些化合物促使E-44/GD731脱水炭化,并在NH3、N2、CO2等惰性气体的发泡作用下形成膨胀性炭层,因而产生强的凝聚相阻燃作用。MPHACTPA-2促进成炭的能力较强,因而阻燃作用更好。 相似文献
4.
通过极限氧指数(LOI)测定、垂直燃烧试验和锥形量热分析研究了苯氧基改性聚氨基环三磷腈(PPHACTPA)对酚醛胺固化环氧树脂(E-44/NX-2003)的阻燃作用,并与聚氨基环三磷腈(PHACTPA)进行了比较。结果表明,PPHACTPA对E-44/NX-2003的阻燃作用与PPHACTPA中苯氧基的数量有关。当每个磷腈环约含有1个苯氧基时(PPHACTPA-1),其阻燃作用略优于PHACTPA,而每个磷腈环所含苯氧基数增至2(PPHACTPA-2)时,其阻燃作用明显降低,差于PHACTPA。PHACTPA和PPHACTPA主要是通过凝聚相机理对E-44/NX-2003产生阻燃作用。阻燃剂在高温下生成具有强脱水作用的磷酸类化合物而促进环氧树脂固化物炭化,同时环氧体系分解生成的惰性气体使炭层发泡形成膨胀性炭层。这种致密的膨胀性炭层通过隔热隔氧及抑制环氧体系进一步地分解而产生阻燃作用。PPHACTPA-1更易转变成磷酸类化合物,因而促进成炭的能力更强,阻燃作用更好。PPHACTPA-2含磷量低,因而促进成炭的能力较差,阻燃作用较弱。 相似文献
5.
利用六氯环三磷腈与咪唑发生亲核取代反应,合成六咪唑环三磷腈(HImCP);通过红外光谱、核磁共振~1H谱和31P谱对其结构进行表征;进一步将其作为固化促进剂,加入双酚A型环氧树脂(E51)/甲基六氢苯酐(MHHPA)固化体系,通过凝胶时间和非等温DSC固化动力学分析研究体系的室温存储稳定性和高温固化反应活性,并考察固化物的力学性能和热性能。结果表明:相较于咪唑,HImCP是一种良好的潜伏性固化促进剂,当其添加量为1%(质量分数)时,E51/MHHPA体系具有较好的室温存储稳定性和高温固化活性;同时,得到的环氧树脂固化物表现出更高的拉伸强度、玻璃化转变温度和热稳定性。 相似文献
6.
六氯环三磷腈的合成与精制研究 总被引:1,自引:0,他引:1
采用复式催化剂/缚酸剂体系,合成了六氯环三磷腈。研究了反应溶剂、投料比例、催化剂、反应时间和原料粒径对六氯环三磷腈产率的影响,优化了合成条件和纯化方法,并确定了最佳反应条件。采用熔点测试、元素分析、红外光谱、X射线衍射、核磁共振等测试手段对产物进行了表征。结果表明,所得产物为目标化合物。产率可稳定在75%~80%之间,产物纯度达到98%。在聚合反应前,需要用重结晶结合升华的方法对六氯环三磷腈单体进行精制,以使聚合反应顺利进行。 相似文献
7.
侯泽明许志彦祁钰昭许松江叶小林宝冬梅张道海蔡晓东周国永邹光龙文竹 《高分子材料科学与工程》2023,39(4):40-49
为了提高环氧树脂(EP)的阻燃性能,将双基阻燃剂六(4-(9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物)-羟甲基苯氧基)环三磷腈(HAP-DOPS)和六苯氧基环三磷腈(HPCTP)/9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS)分别添加到EP中,在含磷量为1.8%(质量分数)时,对比研究了磷腈、磷杂菲基团在分子内和分子间双基协同阻燃对EP性能的影响,探索了其阻燃规律,同时研究了不同添加量的HAP-DOPS对EP的热稳定性、阻燃性能和成炭性能的影响,并分析了其阻燃机理。结果表明,15%HAP-DOPS/EP的极限氧指数(LOI)值提高至31.4%,垂直燃烧测试(UL-94)达到V-0级;当HPCTP/DOPS/EP的含磷量为1.8%,PHPCTP∶PDOPS=1∶1时,复合体系的LOI值为31.2%,达到UL-94 V-0级,即阻燃剂HAP-DOPS和HPCTP/DOPS均能有效改善EP的阻燃性能,但HAP-DOPS在降低热释放方面更有优势,HAP-DOPS/EP的潜在火灾危险性低于HPCTP/DOPS/EP。残炭分析... 相似文献
8.
以六氯环三磷腈与1-氧基磷杂-4-羟甲基-2,6,7-三氧杂双环[2,2,2]辛烷(PEPA)为原料,合成出一种磷腈衍生物阻燃剂六(1-氧代-1-磷杂-2,6,7-三氧杂双环[2,2,2]辛烷-4-亚甲基)环三磷腈(PEPAP)。通过红外光谱和核磁共振氢谱表征了PEPAP的化学结构。熔融共混法构建PEPAP/聚丙烯(PP)阻燃体系并考察其热稳定性和阻燃性能。热重分析表明,PEPAP在N2中初始热分解温度为312℃,800℃时残炭率为34%。阻燃性能测试表明,当PEPAP质量分数为25%时体系的氧指数达29.4%,且体系能够通过UL94 V-0级。红外光谱和扫描电镜结果显示体系残炭炭层完整致密且含有磷酸酯类结构,表明PEPAP是固相阻燃机理。 相似文献
9.
DOPO衍生物在阻燃环氧树脂中的应用研究进展 总被引:3,自引:0,他引:3
综述了近年来DOPO(9,10-二氢-9-氧-10-磷杂菲-10-氧化物)衍生物作为环氧树脂固化剂、环氧树脂和添加型阻燃剂在环氧树脂中的合成和应用状况,并对阻燃环氧树脂的阻燃性和热性能进行了比较。 相似文献
10.
采用在缚酸剂三乙胺存在下的六氯环三磷腈(HCCTP)与羟基硅油(PDMS-OH)亲和取代反应合成一种新型含硅环磷腈化合物。实验先运用红外和31P-NMR谱图分析技术确定了反应产物为含硅环磷腈。随后考察了多种影响因素包括原料配比、缚酸剂用量、反应温度和时间等对取代反应产率的影响规律,得到了较佳的合成反应条件。另外,通过对产物热失重的分析表明含硅环磷腈化合物的热稳定性较好,可望作为的高效硅系阻燃剂应用。 相似文献
11.
采用热重(TG)和微商热重(DTG)实验分析技术,分别对自制的六-对氨基苯氧基环三磷腈(PNH)和4,4’-二氨基二苯甲烷(DMA)为E51型环氧树脂的固化剂,研究了在氮气和空气氛围中2种环氧树脂的阻燃特性和热解动力学;运用Achar法和Coats-Redfern法建立了二者的热裂解动力学模型,得到了2种体系的动力学表观活化能和指前因子。研究表明,与不含磷环氧树脂相比,磷腈固化的环氧树脂更易发生热裂解,而在高温阶段却明显具有阻燃特性;磷腈固化的环氧树脂裂解后期残炭量较高,其活化能与其阻燃机理有关:即表观活化能越大阻燃性越强。 相似文献
12.
13.
以六氯环三磷腈(HCCP)为原料合成了一种六官能度环氧树脂——六(4-缩水甘油氧基甲基苯氧基)环三磷腈(HGPCP),采用红外光谱、核磁共振氢谱和磷谱对其进行了结构表征和确认。选择4,4′-二氨基二苯甲烷(DDM)和4,4′-二氨基二苯砜(DDS)作为固化剂,采用非等温差示扫描量热法对HGPCP的热固化动力学进行了研究。研究表明,HGPCP/DDM和HGPCP/DDS固化体系的表观活化能分别为52.46 kJ/mol和61.77 kJ/mol,相比于通过Kissinger法、Crane法建立的n级动力学模型,DDM和DDS对HGPCP的固化反应更符合Eestak-Berggren双参数自催化模型。此外,结合不同升温速率的特征温度,对DDM、DDS固化HGPCP的工艺条件进行了优化。 相似文献
14.
以六氯环三磷腈(HCCP)、4,4'-二羟基二苯硫醚(TDP)为原料合成了一种环交联型的聚磷腈(PTP)微纳米球,并将其加入到环氧树脂(EP)中制备成PTP微纳米球/EP(PTP/EP)复合材料,研究其阻燃性能。采用FTIR和SEM对PTP微纳米球进行表征;TG分析考察PTP/EP复合材料的热稳定性;极限氧指数(LOI)和锥型量热分析(CONE)对PTP/EP复合材料进行阻燃性能测试。研究结果表明,PTP微纳米球具有不溶不熔的特性,粒径在500 nm~3 μm之间,且拥有优异的热稳定性和成炭性,起始热分解温度高达453.2℃,800℃残炭为74.3%。PTP微球的加入显著提高了EP的阻燃性能。当PTP微纳米球添加量仅为5wt%时,PTP/EP的热释放速率峰值降低了55.43%;LOI值从纯EP的25.6%提高到了30.4%。PTP微球的加入还提高了EP的力学性能。PTP微纳米球因其不溶不熔的特点在EP中充当增强剂,在受热燃烧时充当高效的阻燃剂。本研究为功能性阻燃剂的研发提供了新思路。 相似文献
15.
环三磷腈衍生物在阻燃添加剂、生物医药材料、电解液和液压油等领域有着广泛的应用前景,因此,近年来环三磷腈衍生物的功能化改性研究受到越来越多的关注。利用巯基化合物与丁香酚氧基环三磷腈在紫外光下的巯基-烯点击反应,制备了末端分别含有烷基、羟基和羧基等不同功能基团的系列环三磷腈衍生物,研究了反应时间、投料比和巯基反应物所带的端基官能团对反应的影响规律。发现此方法具有反应条件温和,反应时间短(≤30min),反应产率高(≥95%),可批量制备的优点;同时还可以将具有不同结构的功能基团定量的引入到目标产物中。对产物的热性能表征结果表明,C—S键的引入降低了环三磷腈衍生物的热稳定性,但产物的起始分解温度依然保持在300℃以上;末端基团的种类对产物的热稳定性和受热分解后的残炭量有一定影响。 相似文献
16.
六对醛基苯氧基环三磷腈(HAPCP)是一种重要的无卤高效阻燃剂和精细化工中间体,因具有良好的耐热性和阻燃性而备受关注。以六氯环三磷腈(HCCP)和对羟基苯甲醛为原料制备HAPCP,经红外光谱(IR)、核磁共振(NMR)、元素分析、差热(DSC)和热重(TG)等测试分析手段对产物的结构和热性能进行了表征,并考察了溶剂、缚酸剂、原料配比、反应时间和反应温度对HAPCP收率的影响。结果表明,在四氢呋喃中,以无水碳酸钾为缚酸剂,n(对羟基苯甲醛)∶n(六氯环三磷腈)=7.2∶1,65℃下反应24h,HAPCP的收率可达92.5%。热性能研究表明,HAPCP在N2气氛下的起始分解温度为270℃,800℃时残炭率仍有78.5%,是一种耐热性和热稳定性好的无机-有机杂环化合物,在绝热材料和阻燃材料领域呈现出良好的应用前景。 相似文献
17.
通过对六氯环三磷腈的苯胺氨基化,合成出了六-苯胺基-环三磷腈(HACTP)。将HACTP作为阻燃剂加入聚乙烯醇中进行共混纺丝,制得具有良好阻燃效果的聚乙烯醇纤维。通过各种表征手段研究了阻燃纤维的阻燃性能、热分解性能和力学性能。结果表明,随着HACTP含量增加,阻燃PVA纤维的极限氧指数(LOI)和残炭率随之增加,而其拉伸强度却呈下降趋势。当HACTP的质量百分数在10%~15%,PVA纤维的拉伸强度≥3.2 cN/dtex,其极限氧指数≥28%,PVA纤维同时具有良好的阻燃性能和力学性能。 相似文献
18.
磷腈化合物的合成及其对聚丙烯阻燃的应用 总被引:4,自引:0,他引:4
介绍了苯氧基磷腈化合物的合成,并将其与Mg(OH)2复配,以较少的添加量对聚丙烯阻燃改性,制得了氧指数高达35.5%的阻燃聚丙烯,同时燃烧发烟明显清淡,力学性能良好,断裂伸长率和冲击强度显著改善。 相似文献
19.
20.
以对苯二甲醛、3,5-二氨基-1,2,4-三氮唑和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为原料合成了一种磷杂菲三氮唑双基化合物(DTZ),将其用于高效阻燃环氧树脂。利用FTIR、NMR、GPC和元素分析表征了其分子结构,采用TG和DSC研究了环氧固化物的热性能,利用极限氧指数、垂直燃烧、锥形量热、拉伸性能测试仪探究了环氧固化物的阻燃和力学性能,通过分析DTZ的热裂解行为、热氧化降解行为及炭层的形貌和结构研究了其阻燃机制。结果表明,DTZ的引入会降低环氧固化物的起始降解温度和玻璃化温度,但会提高其高温残炭率和拉伸强力。DTZ可显著提升环氧固化物的阻燃性能,当添加量为6wt%时,所得固化物的极限氧指数(LOI)值为33.5%,UL-94测试等级达到V-0级,热释放速率峰值和总热释放量分别降低21.8%和18.2%。DTZ可通过猝灭自由基、稀释可燃气体、促进基体成炭,在气相和凝聚相同时发挥阻燃作用。 相似文献