首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compatibility of ternary blends of poly(ethylene naphthalate)/poly(pentamethylene terephthalate)/poly(ether imide) (PEN/PPT/PEI) was studied by examining the transesterification of PEN and PPT. ENPT copolymers were formed in situ as compatibilizers between PPT and PEI components in ternary blends. Differential scanning calorimetric (DSC) results for ternary blends showed the immiscibility of PEN/PPT/PEI, but ternary blends of all compositions were phase‐homogeneous after heat treatment at 300°C for more than 60 min. Annealing samples at 300°C yielded amorphous blends with a clear, single glass transition temperature (Tg), as the final state. Additionally, ENPT copolymer improved the compatibility of ENPT/PPT/PEI blends, yielding a homogeneous phase in the ENPT‐rich compositions. The morphology of the ENPT/PPT/PEI blends was altered from heterogeneous to homogeneous by controlling the concentration of PPT in the ENPT copolymers as well as the concentration of the ENPT copolymers. Moreover, a homogeneous phase with a clear Tg was observed when the concentration of PPT in the ENPT copolymer fell to 70 wt% in the ENPT/PEI = 50/50 blends. Experimental results indicate how the concentration of PPT in the ENPT copolymer affects miscibility in the ENPT/PEI blends. POLYM. ENG. SCI. 46:337–343, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
Reactive blending of poly(ethylene terephthalate)/poly(ethylene naphthalene 2,6dicarboxylate) with addition of 2,2'‐bis(1,3‐oxazoline) (BOZ) has been studied under various mixing conditions for the different compositions. The transesterification level, the sequence length of both PET and PEN short blocks, and the degree of randomness were estimated using1H NMR. The results indicate that both mixing time and temperature are the primary factors controlling the transesterification, while the chain extender BOZ can significantly accelerate the transesterification between PET and PEN at 275°C. The composition also, to some extent, influences the transerification level as the mixing time is increased. As a consequence of transesterification proceeding, the sequence structures of the reactive blends are also markedly changed, which corresponds to a transfer from an initial block structure to a multiblock structure with higher randomness. The change in the microstructure of the reactive blends has also been analyzed by a Bernoullian statistics model. The effect of the BOZ on the intrinsic viscosity of the reactive blends is discussed.  相似文献   

3.
The crystallization kinetics of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were investigated by DSC as functions of crystallization temperature, blend composition, and PET and PEN source. Isothermal crystallization kinetics were evaluated in terms of the Avrami equation. The Avrami exponent (n) is different for PET, PEN, and the blends, indicating different crystallization mechanisms occurring in blends than those in pure PET and PEN. Activation energies of crystallization were calculated from the rate constants, using an Arrhenius‐type expression. Regime theory was used to elucidate the crystallization course of PET/PEN blends as well as that of unblended PET and PEN. The transition from regime II to regime III was clearly observed for each blend sample as the crystallization temperature was decreased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 23–37, 2001  相似文献   

4.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
In an attempt to minimize the acetaldehyde formation at the processing temperatures (280–300°C) and the outer–inner transesterification reactions in the poly (ethylene terephthalate) (PET)–poly(ethylene naphthalate) (PEN) melt‐mixed blends, the hydroxyl chain ends of PET were capped using benzoyl chloride. The thermal characterization of the melt‐mixed PET–PEN blends at 300°C, as well as that of the corresponding homopolymers, was performed. Degradations were carried out under dynamic heating and isothermal conditions in both flowing nitrogen and static air atmosphere. The initial decomposition temperatures (Ti) were determined to draw useful information about the overall thermal stability of the studied compounds. Also, the glass transition temperature (Tg) was determined by finding data, indicating that the end‐capped copolymers showed a higher degradation stability compared to the unmodified PET and, when blended with PEN, seemed to be efficient in slowing the kinetic of transesterification leading to, for a finite time, the formation of block copolymers, as determined by 1H‐NMR analysis. This is strong and direct evidence that the end‐capping of the ? OH chain ends influences the mechanism and the kinetic of transesterification. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
The extent of transesterification in poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blends with the addition of PET–PEN copolymers was examined by DSC and 1H‐NMR measurements to evaluate the factor affecting the reaction level at a given temperature and time. Both block (P(ET‐block‐EN)) and random (P(ET‐ran‐EN)) copolymers were used as the copolymers. At a given treatment temperature and time, the level was increased by the addition of P(ET‐block‐EN) into PET/PEN blends. On the other hand, a reverse change was observed when P(ET‐ran‐EN) was mixed with PET/PEN blends. During the treatment, an inhomogeneous phase of the blends changed into the homogeneous one; however, the change showed little effect on the reaction level. The effects of molecular weight on the reaction level were also examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The phase structure of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends was studied in relation to the molecular weight. The samples were prepared by both solution blends, which showed two glass‐transition temperatures (Tg), and melt blends (MQ), which showed a single Tg, depending on the composition of the blends. The Tg of the MQ series was independent of the molecular weight of the homopolymer, although the degree of transesterification in the blends was affected by the molecular weight. The MQ series showed two exotherms during the heating process of a differential scanning calorimetry scan. The peak temperature and the heat flow of the exotherms were affected by the molecular weight of the homopolymers. The strain‐induced crystallization of the MQ series suggested the independent crystallization of PET and PEN. Based on the results, a microdomain structure of each homopolymer was suggested. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2428–2438, 2005  相似文献   

8.
The phase behavior of Poly(ethylene terephthalate)/Poly(ethylene‐2,6‐naphthalate)/Poly(ethylene terephthalate‐co‐ethylene‐2,6‐naphthalate) (PET/PEN/P(ET‐co‐EN)) ternary blends in molten state was evaluated from differential scanning calorimetry (DSC) and NMR results as well as optical microscopic observations. Copolymer of ethylene terephthalate and ethylene‐2,6‐naphthalate was prepared by a condensation polymerization, which was a random copolymer with an intrinsic viscosity (IV) of 0.3 dL/g. The phase diagram of the ternary blends revealed that the miscibility of ternary blends in molten state was dependent on the fraction of P(ET‐co‐EN) in the blends and holding time of the blends at high temperatures above 280°C. With increase in the holding time, the fraction of copolymer in the blends necessary to induce the immiscible to miscible transition decreased. For the blends with longer holding time at 280°C, the phase diagram in molten state was irreversible against the temperature, although a reversibility was found for the blends with short holding time of 1 min at 280°C. The irreversibility of phase behavior was not explained simply by the increase of copolymer content produced during heat treatment. Complex irreversible physical and chemical interactions between components and change of phase structure of the blend in the molten state might influence on the irreversibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

10.
The miscibility of thermotropic liquid crystalline polymers (TLCPs) and polyester blends was investigated with thermal and morphological analyses, as well as transesterification. TLCPs composed of 80 mol % para‐hydroxybenzoate (PHB) and 20 mol % poly(ethylene terephthalate) (PET) or 60 mol % PHB and 40 mol % PET, and polyesters such as PET and poly(ethylene 2,6‐naphthalate) (PEN) were melt blended in an internal mixer. DSC analyses were performed to investigate the thermal transition behavior and to obtain thermodynamic parameters. All the blends showed only a single glass‐transition temperature, which means they are partially miscible in the molten state. The Flory–Huggins interaction parameter was calculated employing the Nishi–Wang approach, and negative values were obtained except for the P(HB8‐ET2)/PEN blends. Transesterification was investigated using 1H‐NMR, and the change of chemical shift compared to pure PET or P(HB‐ET)s was observed in the P(HB‐ET)/PET blends. An intermediate chemical shift value (4.83 ppm) was observed in the P(HB6‐ET4)/PEN blends, which indicates transesterification occurred. The fractured surface morphology of scanning electron micrographs showed that the interfaces between the LC droplets and matrix were not distinct. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1842–1851, 2003  相似文献   

11.
The effect of electron beam (EB) irradiation on the properties and compatibility of poly(ethylene 2,6‐naphthalate) (PEN)/poly(ethylene terephthalate) (PET) blends was investigated. Upon EB irradiation, PEN/PET blends underwent transesterification reactions, resulting in the formation of more random copolymers from the original binary pair. The degree of transesterification increased with dose rate, and all of the irradiated blends exhibited a single glass transition temperature. This indicated that transesterification reactions promoted by EB irradiation led to the formation of a single phase. Transesterification reactions promoted by EB irradiation led to more random copolymers, and the reduced regularity in the irradiated blends decreased the melting temperature. A higher degree of randomness and lower number‐average sequence lengths for the blend systems indicated that a more random chain structure was formed in the blends. The rheological measurements demonstrated that the irradiated PEN/PET blends were miscible. EB irradiation could promote transesterification reaction, thus enhancing the compatibility of PEN/PET blends.  相似文献   

12.
Summary Miscibility of blends of poly(ether imide) (PEI) and poly(ethylene terephthalate) (PET) were studied by differential scanning calorimetry (DSC). Single and composition-dependent Tg's are observed over the entire composition range, indicating that the blends are miscible in the amorphous region. The overall crystallization rate of PET in the blends decreased with increasing the PEI content. The interaction energy density B, which was calculated from the melting point depression of the blends using Nishi-Wang equation, was-5.5 cal/cm3.  相似文献   

13.
The occurrence of transesterification reactions in poly(ethylene terephthalate) (PET)/poly(ethylene naphthalate) (PEN) blends prepared in presence of triphenyl phosphite (TPP) was investigated. When PEN was processed with TPP, which is a known chain extender for PET, chain extension reactions also took place. Torqueprocessing time curves obtained during preparation of 75/25 PET/PEN blends containing TPP, showed a build‐up profile followed by a fast decrease that was interpreted as chain extension between blend components and degradation due to phosphite residues formation, respectively. Although transesterification inhibition was expected, this type of reaction was not suppressed by TPP.  相似文献   

14.
Bio‐based poly(trimethylene terephthalate) (PTT) and poly(ether esteramide) (PEEA) blends were prepared by melt processing with varying weight ratios (0–20 wt %) of ionomers such as lithium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Li) and sodium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Na). The blends were characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light microscopy (PLM), and transmission electron microscopy (TEM). DSC and PLM results showed that EMAA‐Na increased the crystallization rate for PTT significantly, whereas EMAA‐Li did not enhance the crystallization rate at all. Specific interactions between PEEA and ionomers were confirmed by DSC and TEM. Electrostatic performance was also investigated for those PTT blends because PEEA is known as an ion‐conductive polymer. Here, we confirmed that both sodium and lithium ionomers work as a synergist to enhance the static decay performance of PTT/PEEA blends. Morphological study of these ternary blends systems was conducted by TEM. Dispersed ionomer domains were encapsulated by PEEA, which increases the interfacial surface area between PEEA and the PTT matrix. This encapsulation effect explains the unexpected synergy for the static dissipation performance on addition of ionomers to PTT/PEEA blends. This core–shell morphology can be predicted by calculating spreading coefficient for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The transesterification reaction of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) blends during melt‐mixing was studied as a function of blending temperature, blending time, blend composition, processing equipment, and different grades of poly(ethylene terephthalate) and poly(ethylene 2,6‐naphthalate). Results show that the major factors controlling the reaction are the temperature and time of blending. Efficiency of mixing also plays an important role in transesterification. The reaction kinetics can be modeled using a second‐order direct ester–ester interchange reaction. The rate constant (k) was found to have a minimum value at an intermediate PEN content and the activation energy of the rate constant was calculated to be 140 kJ/mol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2422–2436, 2001  相似文献   

16.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

17.
By using thermal and NMR analyses with supporting evidence from X-ray and scanning electron and optical microscopy, this study has attempted to clarify confusing issues of physical miscibility vs. chemical trans-reaction in blends of aryl polyesters upon heating. The study demonstrated that the blends of poly(pentylene terephthalate) (PPT) with poly(ethylene naphthalate) (PEN) were initially immiscible; however, with heating/annealing at high temperatures (300 °C) for long enough times, the original two phases merged into one single phase composed of two polyesters and some minor fractions of copolyesters. Upon extended heating, however, two original polyesters disappeared, and a random copolyester, coded as EN-co-PT, of various sequence lengths was produced as a result of extensive trans-reactions between PEN and PPT. The trans-reacted products from heated PEN/PPT (50/50) blend were characterized using 1H NMR. The sequence structures of the produced co-polyesters and intermediate products were determined by a triad analysis, which showed that the mean sequence lengths became shorter and the randomness increased with time of heating. X-ray analysis confirmed that the PEN/PPT (50/50) blend completely lost its crystallizability only when heated at 300 °C for time of 60 min or longer, indicating formation of fully random copolyesters.  相似文献   

18.
The morphology and properties of blends of poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) that were injection molded under various conditions were studied. Under injection molding conditions that make it possible to secure transparency, blends did not show clear crystallinity at blending ratios of more than 20 mol% in spite of the fact that crystallinity can be observed in the range of PEN content up to 30 mol%. Because both transparency and crystallinity could be secured with a PEN 12 mol% blend, this material was used in injection molding experiments with various injection molding cycles. Whitening occurred with a cycle of 20 sec, and transparency was obtained at 30 sec or more. This was attributed to the fact that transesterification between PET and PEN exceeded 5 mol% and phase solubility (compatibility) between the PET and PEN increased when the injection molding time was 30 sec or longer. However, when the transesterification content exceeded 8 mol%, molecularly oriented crystallization did not occur, even under stretching, and consequently, it was not possible to increase the strength of the material by stretching. PET/PEN blend resins are more easily crystallized by stretch heat‐setting than are PET/PEN copolymer resins. It was understood that this is because residual PET, which has not undergone transesterification, contributes to crystallization. However, because transesterification reduces crystallinity, the heat‐set density of blends did not increase as significantly as that of pure PET, even in high temperature heat‐setting. Gas permeability showed the same tendency as density. Namely, pure PET showed a substantial decrease in oxygen transmission after high temperature heat‐setting, but the decrease in gas permeability in the blend material was small at heat‐set temperatures of 140°C and higher.  相似文献   

19.
Summary Differential scanning calorimeter (DSC), optical microscopy (OM) and scanning electron microscopy (SEM) were performed to characterize the miscibility of a blend system comprising poly (butylene naphthalate) (PBN) and poly (ether imide) (PEI). DSC scans showed there was only one single Tg for each blend and the glass transitions increase monotonously with the increase of PEI content. The glass transition temperatures of the blends fitted the Fox equation well implying that the blends exhibited fine segmental scale of mixing. No lower critical solution temperature (LCST) was observed by OM for the blends. SEM micrographs showed the fracture surface of quenched sample exhibited a homogeneous structure. No obvious IR peak shift of C=O absorption at 1780 cm−1 was observed suggesting a relatively low level of specific interaction between two molecules. It was concluded that these blends were miscible with non-specific intermolecular interactions. Received: 5 January 2001/Accepted: 27 February 2001  相似文献   

20.
The influences of the glass fiber (GF) content and the cooling rate for nonisothermal crystallization process of poly(butylene terephthalate)/poly(ethylene terephthalate) (PBT/PET) blends were investigated. The nonisothermal crystallization kinetics of samples were detected by differential scanning calorimetry (DSC) at cooling rates of 5°C/min, 10°C/min, 15°C/min, 20°C/min, 25°C/min, respectively. The Jeziony and Mozhishen methods were used to analyze the DSC data. The crystalline morphology of samples was observed with polarized light microscope. Results showed that the Jeziony and Mozhishen methods were available for the analysis of the nonisothermal crystallization process. The peaks of crystallization temperature (Tp) move to low temperature with the cooling rate increasing, crystallization half‐time (t1/2) decrease accordingly. The crystallization rate of PBT/PET blends increase with the lower GF contents while it is baffled by higher GF contents. POLYM. COMPOS. 36:510–516, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号