首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of chitosan by grafting with 4‐vinylpyridine (VP) was carried out both in homogeneous and heterogeneous phases, using potassium persulfate (K2S2O8) and sodium bisulfite (NaHSO3) as redox initiators. The effect of monomer concentration, initiator concentration and redox ratio, time and temperature on the extent of grafting (G%), homopolymer formation, and the efficiency of grafting were studied. Values of grafting percentages up to 96% were reached in heterogeneous conditions and up to 130% in homogeneous conditions (in 5% acetic acid). The grafting was confirmed by FTIR and 1H NMR spectroscopy. The grafted samples were characterized by scanning electron microscopy, X‐ray diffraction, and thermogravimetric analysis. The crystallinity of the used chitosan was not affected by grafting, it even increased slightly. Dye uptake of the grafted samples towards the different types of dyes (acidic and basic) was investigated and was found to improve profoundly over the native chitosan with a higher uptake for the acidic dye. The grafted samples showed an increased swelling in water, which increased further upon quaternization of the graft copolymers. The extent of swelling is higher in acidic and basic media more than in neutral pH. The grafted copolymers are soluble with difficulty in warm acetic acid solution. The quaternized graft copolymer was found to be soluble in water. The biological activity of the quaternized graft copolymers (G = 130 and 80%) was investigated and was found to have an inhibition effect on both the Azotobacter fungus and the bacterium Fusarium oxysporium. The effect on the micro organisms is proportional to the amount of VP in the graft copolymer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3308–3317, 2006  相似文献   

2.
This paper describes the synthesis and characterization of N‐(4‐carboxyphenyl) itaconamic acid (CPA) and N‐(4‐carboxyphenyl) itaconimide (CPI) obtained by reacting itaconic anhydride with p‐aminobenzoic acid. Structural and thermal characterization of CPA and CPI was done using 1H‐NMR, FTIR, and differential scanning calorimetry (DSC). Copolymerization of CPA or CPI with methyl methacrylate (MMA) in solution was carried out at 60 °C using azobisisobutyronitrile as an initiator and dimethyl acetamide or THF as solvent. Feed compositions having varying mole fractions of CPA or CPI ranging from 0.05–0.20 or 0.1–0.5 were taken to prepare copolymers. Copolymerizations were terminated at low percentage conversion. Structural characterization of copolymers was done by 1H‐NMR and elemental analysis. Copolymer composition was determined using percentage nitrogen content. The reactivity ratios were r1 (MMA) = 0.68 ± 0.06 and r2 (CPI) = 0.46 ± 0.06. The intrinsic viscosity [η] was determined using an Ubbelohde suspension level viscometer. [η] decreased with increasing mole fraction of N‐(p‐carboxyphenyl) itaconimide or N‐(p‐carboxyphenyl) itaconamic acid in copolymers. Glass transition temperature and thermal stability of the copolymers were determined using DSC and thermogravimetric analysis, respectively. The glass transition temperature (Tg) as determined from DSC scans increased with increasing amounts of CPA or CPI in copolymers. A significant improvement in the char yield was observed upon copolymerization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1909–1915, 2005  相似文献   

3.
Urease was covalently immobilized on glutaraldehyde-pretreated chitosan membranes. The optimum immobilization conditions were determined with respect to glutaraldehyde pretreatment of membranes and to reaction of glutaraldehyde-pretreated membranes with urease. The immobilized enzyme retained 94% of its original activity. The properties of free and immobilized urease were compared. The Michaelis constant was about five times higher for immobilized urease than for the free enzyme, while the maximum reaction rate was lower for the immobilized enzyme. The stability of urease at low pH values was improved by immobilization; temperature stability was also improved. The optimum temperature was determined to be 65°C for the free urease and 75°C for the immobilized form. The immobilized enzyme had good storage and operational stability and good reusability, properties that offer potential for practical application.  相似文献   

4.
In this study, poly(N,N‐dimethylacrylamide) grafted chitosan (PDMAAm‐g‐CT) hydrogels were prepared for deoxyribonucleic acid (DNA) adsorption. Instead of directly grafting the N,N‐dimethylacrylamide (DMAAm) monomer onto the chitosan (CT) chains, poly(N,N‐dimethylacrylamide) with carboxylic acid end group (PDMAAm‐COOH) was firstly synthesized by free‐radical polymerization using mercaptoacetic acid (MAAc) as the chain‐transfer agent and then grafted onto the CT having amino groups. The synthesis of PDMAAm‐COOH and its grafting onto the CT chains were confirmed by attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy. From gel permeation chromatography measurements, the number‐average molecular weight (M n) and polydispersity index of PDMAAm‐COOH were found as 2400 g/mol and 2.3, respectively. The PDMAAm‐g‐CT hydrogels were utilized as the adsorbents in DNA adsorption experiments conducted at +4°C in a trisEDTA solution of pH 7.4. The hydrogels produced with higher PDMAAm‐COOH content exhibited higher DNA adsorption capacity. The DNA adsorption capacity up to 4620 μg DNA/g dry gel could be achieved with the PDMAAm‐g‐CT hydrogels prepared in 80.0 wt % PDMAAm‐COOH feed concentration. This value is approximately seven times higher than that of CT alone. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
N‐(2‐Hydroxy)propyl‐3‐trimethylammonium chitosan chloride (HTCC) was synthesized by the reaction of glycidyltrimethylammonium chloride (GTMAC) and chitosan. The reaction product was a water‐soluble chitosan derivative, and showed excellent antimicrobial activity. HTCC was blended with polyacrylonitrile (PAN) using an NaSCN aqueous solution as a common solvent. The blend solution was transparent and stable up to 6 months without phase separation. The PAN/HTCC blend fibers were prepared via a wet spinning and drawing process. Thermal, electrical, and mechanical properties as well as antimicrobial activity were investigated. It was found that the antistatic property and antimicrobial activity of the blend fibers could be achieved by adding only a small amount of HTCC. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2258–2265, 1999  相似文献   

6.
β‐Galactosidase was immobilized on chitosan using tris(hydroxymethyl)phosphine (THP) as a coupling agent to produce galactooligosaccharides (GOS) from lactose. Both the THP‐immobilized and the free enzymes were maximally achieved at pH 5.0 and the optimal temperature was 55 °C. The residual activities for the THP‐immobilized enzyme and the free enzyme were 75 and 25%, respectively, after being incubated in 0.1 mol dm?3 sodium acetate buffer (pH 5.0) at 55 °C for 13 days. The formation of GOS was catalyzed by free and THP‐immobilized β‐galactosidase from lactose. The yield of GOS produced by the free enzyme from the lactose solution (36%, w/v) at 55 °C was 43% on a dry weight basis, which was similar to the 41% GOS yield produced by the THP‐immobilized enzyme system. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
All Blend films were prepared from a mixture of 2 wt % chitosan in acetate solution and 4 wt % quaternized poly(4‐vinyl‐N‐butyl) pyridine (QPVP) in aqueous solution and dried at room temperature for 72 h to obtain the films. Their structure and properties were studied by infrared (IR), wide‐angle X‐ray diffraction (WXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). Crystallinities of the blend films decreased with the increase of QPVP when weight of QPVP content was less than 15.0 wt %. The thermostability, tensile strength, and breaking elongation of the films in dry state were better than those of chitosan film. Tensile strength of the blend film dried at 40°C under vacuum for 24 h achieved 56.38 MPa when the weight ratio of chitosan to QPVP was 9 : 1. The structural analysis indicated that there was a strong interaction between chitosan and QPVP resulting from strong adhesion between both polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 559–566, 2004  相似文献   

8.
An N‐dodecylated chitosan (CS‐12) was synthesized from dodecyl bromide and chitosan and was assembled with DNA to form a polyelectrolyte complex (DNA/CS‐12 PEC). UV was used to examine the thermal stability of DNA embedded in PEC. The results indicate that the incorporation of dodecylated chitosan can enhance the thermal stability of DNA. The analysis of AFM image shows that PEC develops a globule‐like structure composed of 40–115 DNA molecules. Dissociation of PEC was investigated by the addition of low molecular weight electrolytes. The added small molecular salts dissociate the PEC, inducing DNA to release. The ability of Mg2+ to dissociate PEC is greater compared to that of Na+ and K+. From AFM images, it can be visualized that DNA remains intact and undamaged due to the protection from DNase offered by alkylated chitosan. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3391–3395, 2001  相似文献   

9.
Novel polyion complexes films of chitosan and quarternized poly(4‐vinyl‐N‐carboxymethylpyridine) containing zwitterion structure units were prepared by casting method. The aim of this work was to produce a hydrophilic film with the potential use as a hydrophilic membranes of the types used in membranes distillation and osmotic distillation for separating azeotropic, close‐boiling, and aqueous organic mixtures. Their structure and properties were studied by infrared, wide‐angle X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, tensile tester, and swelling measurements. The results indicated that polyion complexes occurred between chitosan and quarternized poly (4‐vinyl‐N‐carboxymethylpyridine) containing zwitterion structure units. The thermostability of these blends decreased with the increase of quarternized poly(4‐vinyl‐N‐carboxymethylpyridine) content. Initially, appreciable improvement in tensile strength and breaking elongation were achieved with increase of quarternized poly(4‐vinyl‐N‐carboxymethyl‐pyridine) content to 30%, the maximum value of 46.65 MPa tensile strength and 25.67% breaking elongation were achieved, respectively. The maximum degree of swelling was achieved when the weight ratio of chitosan versus poly(4‐vinyl‐N‐carboxymethylpyridine) was 50 : 50. Meanwhile, the relationship between their structure and properties was also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
壳聚糖及其衍生物固载环糊精的制备及应用研究进展   总被引:1,自引:0,他引:1  
壳聚糖固载化环糊精是一类新型的功能高分子材料,它既具有环糊精的包络识别、控释和运输性能,又具有壳聚糖良好的生物相容性、无毒性和生物降解性能等特性,可用作药物控制释放载体、色谱分离填料和水处理剂等。简要综述了近几年壳聚糖固载化环糊精的方法及其应用研究进展。  相似文献   

11.
A nonspecific chitosan hydrolytic enzyme, cellulase, was immobilized onto magnetic chitosan microspheres, which was prepared in a well spherical shape by the suspension crosslinking technique. The morphology characterization of the microspheres was carried out with scanning electron microscope and the homogeneity of the magnetic materials (Fe3O4) in the microspheres was determined from optical micrograph. Factors affecting the immobilization, and the properties and stabilities of the immobilized enzyme were studied. The optimum concentration of the crosslinker and cellulase solution for the immobilization was 4% (v/v) and 6 mg/mL, respectively. The immobilized enzyme had a broader pH range of high activity and the loss of the activity of immobilized cellulase was lower than that of the free cellulase at high temperatures. This immobilized cellulase has higher apparent Michaelis–Menten constant Km (1.28 mg/mL) than that of free cellulase (0.78 mg/mL), and the maximum apparent initial catalytic rate Vmax of immobilized cellulase (0.39 mg mL?1 h?1) was lower than free enzyme (0.48 mg mL?1 h?1). Storage stability was enhanced after immobilization. The residual activity of the immobilized enzyme was 78% of original after 10 batch hydrolytic cycles, and the morphology of carrier was not changed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1334–1339, 2006  相似文献   

12.
Three types of N[4‐(N‐substituted amino carbonyl)phenyl] maleimide (RPhMI:N‐substituent (R) = phenyl, cyclohexyl, p‐chlorophenyl) were grafted onto poly(vinyl chloride) (PVC) films by using gamma irradiation. The effects of different parameters on the graft yield were investigated. These parameters included radiation dose and monomer concentration. Thermal properties of the grafted polymer were investigated by the determination of dehydrochlorination rate, thermal gravimetric behavior, and UV stability.  相似文献   

13.
The graft copolymerization of butyl acrylate (BA) onto chitosan was tried via a new protection‐graft‐deprotection procedure. About 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was synthesized and characterized by Fourier transform infrared spectra analysis (FT‐IR) and 1H‐NMR. Because the intermediate 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was soluble in organic solvents, the graft copolymerization was carried out in a homogeneous system. Grafting was initiated by γ‐irradiation. The graft extent was dependent on the irradiation dose and the concentration of BA monomer, and copolymers with grafting above 100% were readily prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 489–493, 2006  相似文献   

14.
Poly(2‐hydroxyethylmethacrylate) (PHEMA)‐based microspheres (150–200 µm in diameter) were produced by a modified suspension polymerization of different type of comonomers—namely, acrylic acid, dimethylaminoethyl‐methacrylate, and methylmethacrylate. These microspheres were activated with cyanogen bromide (CNBr) at pH 11.5, and heparin molecules were then immobilized through covalent bonds. The amount of immobilized heparin was controlled by changing the initial concentration of CNBr and heparin. The increase in the initial concentrations of both CNBr and heparin caused an increase in the amount of heparin immobilized onto microspheres for all polymer surfaces. The maximum heparin immobilization was observed on the PHEMA homopolymer microspheres (180 mg/g). The plain and heparin‐immobilized microspheres were contacted with blood in in vitro systems and in ex vivo animal experiments. Loss of the blood cells and clotting times were followed. Anticoagulant effect of the immobilized heparin was clearly observed with blood coagulation experiments. Loss of cells in the blood contacting with heparin‐immobilized microspheres was significantly lower than those observed with the plain microspheres. Bovine serum albumin adsorption onto the microspheres containing heparin on their surfaces was also studied. High albumin adsorption values (up to 127 mg/g) were observed in which the heparin‐immobilized PHEMA microspheres were used. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 655–662, 1999  相似文献   

15.
A novel, asymmetric diamine, 3‐(4‐aminophenylthio)‐N‐aminophthalimide, was prepared from 3‐chloro‐N‐aminophthalimide and 4‐aminobenzenethiol. The structure of the diamine was determined via IR and 1H‐NMR spectroscopy and elemental analysis. A series of polyimides were synthesized from 3‐(4‐aminophenylthio)‐N‐aminophthalimide and aromatic dianhydrides by a conventional two‐step method in N,N‐dimethylacetamide and by a one‐step method in phenols. These polyimides showed good solubility in 1‐methyl‐2‐pyrrolidinone, m‐cresol, and p‐chlorophenol, except polyimide from pyromellitic dianhydride, which was only soluble in p‐chlorophenol. The 5% weight loss temperatures of these polyimides ranged from 460 to 498°C in air. Dynamic mechanical thermal analysis indicated that the glass‐transition temperatures of the polyimides were in the range 278–395°C. The tensile strengths at break, moduli, and elongations of these polyimides were 146–178 MPa, 1.95–2.58 GPa, and 9.1–13.3%, respectively. Compared with corresponding polyimides from 4,4′‐diamiodiphenyl ether, these polymers showed enhanced solubility and higher glass‐transition temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
A novel biocompatible scaffold was prepared by cross‐linking hyaluronan (HA) and chitosan (CS). The carboxyl groups of HA were activated by 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) and then cross‐linked with amino groups of CS by forming amide bonds. The HA/CS scaffold thus prepared was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and differential scanning calorimetry. FTIR spectra showed that the absorbance of the amide (1550 cm?1) and carbonyl (1633 cm?1) bond in the cross‐linked scaffold was stronger than that in HA or CS. SEM micrographs showed that the cross‐linked scaffold produced at low EDC concentration had an intertwisted ribbon‐like microstructure, while the product prepared at higher EDC concentration had a porous structure. The concentration of EDC in the reaction system greatly affected the structure and properties of the HA/CS scaffold. The prepared scaffold could strongly resist degradation by hyaluronidase, free radicals in vitro and stress. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
18.
This paper describes the preparation of enantioselective catalysts based on derivatives of imidazolidine‐4‐thione and their subsequent anchoring by means of a sulfur atom on a polymeric carrier. First, we verified the catalytic activity and enantioselectivity in the Henry reaction of the homogeneous variants of the catalysts, i.e., the copper(II) complexes of 2‐(pyridine‐2‐yl)imidazolidine‐4‐thiones and 4‐benzylsufanyl‐2‐(pyridine‐2‐yl)imidazolines themselves. It was found that these catalysts exhibit high enantioselectivity (up to 98% ee). Subsequently, the imidazolidine‐4‐thione catalysts were immobilized by anchoring to polymeric carriers based on a copolymer of styrene and 4‐vinylbenzyl chloride. These heterogeneous catalysts were analogously tested with regard to their catalytic activity and enantioselectivity in the Henry reaction, and moreover, the possibility of their separation and reuse was studied. It was found that all the prepared immobilized catalysts are highly enantioselective (up to 97% ee). Their recycling ability was tested in Henry reaction of 2‐methoxybenzaldehyde with nitromethane. It was found that they can be recycled more than ten times without any decrease of their enantioselectivity. Therefore, they present a better means of catalysis than the original copper(II) complexes of imidazolidine‐4‐ones from both economic as well as ecological points of view. Thus, such immobilized catalysts exhibit high application potential for the asymmetric Henry reaction.

  相似文献   


19.
A new copolymer of N‐(4‐(3‐thienyl methylene)‐oxycarbonylphenyl)maleimide (MBThi) with thiophene [P(MBThi‐co‐Th)] was synthesized electrochemically in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, in acetonitrile/borontrifluoride ethylether solvent mixture (80 : 20, v/v). Spectroelectrochemical analysis of the resulting copolymer reflected electronic transitions at 440, 730, and ~1000 nm, revealing π–π* transition, polaron, and bipolaron band formation, respectively. Switching ability was evaluated by a kinetic study via measuring the transmittance (%T) at the maximum contrast. Dual‐type polymer electrochromic devices (ECDs) based on P(MBThi‐co‐Th) and poly(ethylene dioxythiophene) (PEDOT) were constructed. Spectroelectrochemistry, switching ability, and stability of the devices were investigated by UV–vis spectroscopy and cyclic voltammetry. These devices exhibit low switching voltages (between 0.0 and +2.0 V) and short switching times with reasonable switching stability under atmospheric conditions. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 4500–4505, 2006  相似文献   

20.
The grafting of N,N′‐methylenebisacrylamide (N,N′‐MBA) onto cellulose is carried out using the cobaltacetylacetonate complex (Co(acac)3) under nitrogen atmosphere at 40°C. The rate of graft copolymerization has been studied as a function of [N,N′‐MBA], [Co(acac)3], and temperature. The activation energy of grafting is found to be 156.0 k J mol−1 within the temperature range of 30–60°C. The effect of perchloric acid, methanol, and surfactants on graft yield has also been studied and results are suitably explained. The higher efficiency of the metal chelate in initiation of graft copolymerization has been assumed due to the coordination of the π electrons of the N,N′‐MBA with the metal chelate, which facilitated the formation of the radicals through homolytic cleavage of metal–oxygen bond of the cobalt acetylacetonate complex. On the basis of the results, a suitable kinetic scheme for graft copolymerization is presented and rate expression is derived. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 906–912, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号