首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘超  文豪  张楚虹 《材料导报》2016,30(18):26-29, 41
硅作为锂离子电池负极材料具有极高的理论比容量(4200mAh/g),是目前商业化石墨负极材料的数十倍。但是由于在充放电过程中极易发生粉化破碎,导致其循环比容量会迅速衰减。首次通过水热还原的方法制备了自支撑纳米硅/石墨烯复合纸柔性负极材料。SEM表征显示纳米硅颗粒均匀地分散在石墨烯片层中,制得的复合纸电极较纯硅纳米颗粒的电化学性能有大幅度提高,在100mA/g的电流密度下,首周放电比容量4003mAh/g,十分接近硅的理论比容量,且首周库伦效率高达91%。复合纸循环20周后比容量在3300mAh/g左右,50周后仍能维持1000mAh/g左右的比容量。这主要可归功于石墨烯纸电极优异的柔韧性和导电性,有效抑制了纳米硅颗粒的体积膨胀和结构破坏。同时水热还原法较低的还原温度保证了石墨烯纸还原前后厚度变化不大,有利于石墨烯片层与Si纳米颗粒的紧密接触。  相似文献   

2.
以酚醛树脂包覆纳米硅颗粒后通过碳化处理,制备了具有核壳结构的Si/C复合负极材料,并研究了碳化温度和电极中活性物质含量对储锂性能的影响。透射电子显微镜分析结果表明,该复合材料由厚度为5~15nm的无定型碳壳包覆的硅颗粒组成。电化学测试表明,750℃碳化所得复合材料在活性材料∶粘结剂∶乙炔黑=1∶1∶1(质量比)时,初始放电容量为1836mAh/g(首次库仑效率84.8%),循环50次后仍可保持873mAh/g的可逆容量。此外,具有核壳结构的Si/C复合负极比纯硅负极表现出更好的循环稳定性,这可能是因为碳壳的存在缓解了硅的体积膨胀、改善硅的导电性,在一定程度上保证了Li+嵌入和脱出过程的稳定进行。  相似文献   

3.
硅由于具有超石墨10倍的高理论容量和相对适中的放电平台而备受关注,是最具潜力的下一代锂离子电池负极材料之一。然而,硅的本征电导率低,且在嵌锂的过程中有着巨大的体积变化(300%),会导致材料粉化,电极崩塌,失去电接触。此外,在电解液中硅表面的SEI膜重复形成也导致了极化增大,库伦效率降低和电解液消耗等问题。为了解决上述问题,实现硅电极的商业化应用,改善硅基电极的途径主要有:制备新型硅基材料抑制体积效应和提高电导率,改进粘结剂来加强电极结构防止电极崩塌,改进电解液以提高SEI膜质量和库伦效率。当前,改进硅基负极材料性能的主要策略是纳米化、孔隙化和复合化。粘结剂的改性也可分为开发新型粘结剂和修饰已有粘结剂。主要从硅基材料和粘结剂两方面论述了近年来的发展状况,并展望了其未来的发展方向。  相似文献   

4.
负极理论容量最大的硅在充放电过程中,体积过度膨胀粉化导致容量衰减快,成为其作为商用负极材料的最大障碍.碳材料不仅具有一定的电化学活性,结构也较稳定,可以作为硅电极的"缓冲基体";具有高容量和优良循环性能的硅-碳复合负极材料已经成为该领域的研究热点.按照碳材料的分类,评述了Si/C复合电极材料,并初步展望了该领域的研究方向.  相似文献   

5.
硅负极材料因具有较高的理论容量(Li22Si5合金相对应4 200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1 136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。  相似文献   

6.
硅作为锂离子电池负极材料具有极高的比容量,被认为是最有应用潜力的下一代锂离子电池负极候选材料。本文系统总结了硅负极材料的电化学储锂特性和储锂机理,分析了硅负极材料存在的主要问题及原因。针对存在的问题,从嵌脱锂过程硅材料粉化调控、稳定固体电解质界面膜(SEI膜)的构建和硅材料导电性调变3方面对硅负极材料的电化学改性进展进行了评述,并指出了硅负极储锂材料今后的研究方向。  相似文献   

7.
以包覆结构Si/C复合材料作为负极的锂离子电池(LIBs)具有能量密度高、自放电效率低、循环寿命长等特点。然而,锂在硅中插入/脱出过程的体积膨胀和固体电解质界面膜(SEI)的不稳定性,阻碍了硅的商业化应用。本文通过对近年来新型包覆结构Si/C复合负极材料的构筑方法、电化学性能、比容量和循环性能进行分析和研究,发现包覆结构Si/C复合负极材料不仅可以缓解硅在锂化过程中的体积膨胀和炭层破裂,而且可以有效提高LIBs循环稳定性。因此,Si/C复合材料有望取代石墨成为高容量LIBs的主要负极材料。  相似文献   

8.
以聚乙烯吡咯烷酮(PVP)作为高分子聚合物配体, 采用静电纺丝法制备了Si/C复合负极材料。利用PVP高温烧结形成的碳作为体积缓冲骨架, 有效地解决了硅在循环过程中的体积膨胀和粉化问题。采用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的晶体结构及微观形貌进行了研究。结果表明, 材料整体呈纤维状分布, 纤维直径300 ~ 400 nm, Si粒子以“麦穗状”均匀地分布在由无定形碳构成的纤维上。电化学测试结果表明, 复合材料首次充放电的不可逆容量为294.9 mAh/g, 是由于电极与电解液界面间固态电解质(SEI)膜的形成所致。另外, 复合材料在低倍率(0.1C、0.2C和0.5C)和高倍率(1.0C和2.0C)下均具有较高的库伦效率及较好的循环稳定性。  相似文献   

9.
锂离子电池多孔硅/碳复合负极材料的研究   总被引:1,自引:0,他引:1  
以商业化多晶硅粉为原料, 采用金属银催化剂诱导化学腐蚀的方法制得三维多孔硅材料。通过优化腐蚀条件, 得到孔径约为130 nm, 比表面为4.85 m2/g的多孔硅材料。将多孔硅和PAN溶液混合球磨并经高温烧结后在多孔硅表面包覆上一层致密的无定形碳膜, 从而制得多孔硅/碳复合材料作为锂离子电池的负极材料。3D多孔硅结构可以缓解电化学嵌/脱锂过程中材料的体积效应, 无定形碳膜层可有效改善复合材料的导电性能。电化学性能测试表明, 该多孔硅/碳复合负极材料电池在0.4 A/g的恒电流下, 首次放电容量3345 mAh/g, 首次循环库伦效率85.8%, 循环55次后容量仍保持有1645 mAh/g。并且在4 A/g的倍率下, 容量仍维持有1174 mAh/g。该方法原料成本低廉, 可规模化生产。  相似文献   

10.
制备长循环稳定、高容量的负极材料是锂离子电池实现大规模储能应用的前提之一。利用静电纺丝技术和水热硫化的方法制备了均匀分布的NiS2/碳纳米纤维(NiS2/C)复合材料。作为锂离子电池负极材料,NiS2/C电极的首次放电比容量为864.6 mAh/g,首次库仑效率为62.7%。其中不可逆容量为322.9 mAh/g,不可逆容量主要由转换反应的部分不可逆及固态电解质(SEI)膜的形成造成的。NiS2/C复合电极表现出优异的循环稳定性,200 mA/g下150次循环后容量仍然维持在519 mAh/g,容量保持率高达90.4%。此外,在2 A/g大电流密度下,NiS2/C电极的容量仍高于310 mAh/g表现出出色的倍率性能。借助XRD、SEM及TEM表征,分析发现包裹着NiS2纳米颗粒的碳纤维,作为良好的导电介质,既可以提高NiS2的导电性,也可缓解NiS2脱嵌过程中的体积膨胀,使得NiS2/C电...  相似文献   

11.
以钛掺杂介孔二氧化硅SBA-15为前驱体,用镁热还原法制备多孔硅/硅钛合金复合材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和红外光谱(FT-IR)等方法对复合材料进行表征;利用恒电流充放电对复合材料作为锂离子电池负极材料的电化学性能进行分析。结果表明,多孔结构为体积膨胀提供了缓冲空间,硅钛合金的存在起到支撑骨架的作用,同时一定程度上改善了负极材料的导电性,多孔硅/硅钛合金复合材料具有较好的循环稳定性,0.1C循环50圈后可逆容量为801mAh/g,倍率性能也较单质硅材料大大提高,1C倍率下放电容量为618.9mAh/g。  相似文献   

12.
硅作为锂电池负极材料虽然具有非常高的理论比容量(3600mAh·g-1),但因其充过电过程中严重的体积效应而导致电极循环性能差,同时硅为半导体材料,导电性较差。本论文以泡沫镍材料为基体,通过水热、氢化还原以及磁控溅射等制备工艺制备了具有核壳结构的自支撑纳米线阵列的复合负极,纳米线阵列的结构设计可以有效释放硅膨胀时产生的内应力,抑制粉化现象。另外较大的比表面积还能有效增加Co/Si薄膜与电解液的接触面积,加快Li+在液/固相中的传输速率,降低电极的极化现象。在500mA·g-1电流密度下循环100次后Co/SiNWs的比容量为1260mAh·g-1,单圈容量衰减仅有0.02%。将电流密度提升至1000mA·g-1,500次反复充放电后依然有90.6%的容量留存。在高倍率下Co/Si NWs电极也有不俗的表现,4000mA·g-1下循环比容量达880mAh·g-1,当电流密度回到500mA·g-1时,容量可恢复至初始的93%。优异的电化学性能表明本文设计的硅基复合负极材料较好地克服了硅材料应用中的体积膨胀和导电性差的问题。  相似文献   

13.
谭毅  王凯 《无机材料学报》2019,34(4):349-357
硅的理论嵌锂比容量是石墨材料比容量的十倍以上, 脱锂电位低, 资源丰富, 倍率特性较好, 故高比能量的硅基材料成为了电动汽车?可再生能源储能系统等领域的研究热点?但由于其在脱嵌锂过程中巨大的体积膨胀效应会导致硅电极材料粉化和结构崩塌, 并且在电解液中硅表面重复形成的固相电解质层(SEI)使极化增大?库伦效率降低, 最终导致电化学性能的恶化?为了解决上述问题, 加快实现硅基电极的商业化应用, 本文系统总结了通过硅基材料的选择和结构设计来解决充放电过程中体积效应的工作, 并深入分析和讨论了具有代表性的硅基复合材料的制备方法?电化学性能和相应机理, 重点介绍了硅碳复合材料和SiOx(0<x≤2)基复合材料?最后对硅基负极材料存在的问题进行了分析, 并展望了其研究前景?  相似文献   

14.
锂离子电池硅基负极材料的研究进展   总被引:1,自引:1,他引:0  
硅负极材料具有很高的理论比容量(4200mAh/g),但充放电过程中巨大的体积变化导致其循环性能很差,同时较低的电导率以及与常规电解液的不相容性等因素限制了硅作为负极材料在锂离子电池中的应用。因此,目前大部分研究人员都致力于解决其循环性能差的问题。综述了近年来改善硅基负极材料性能的最新进展,指出了硅基材料作为锂离子电池负极材料的研究前景。  相似文献   

15.
硅(Si)基负极因具有超高的理论比容量(4200 mAh/g),有望替代石墨电极(理论比容量372 mAh/g)成为新一代的高容量锂离子电池负极。但Si负极在电池循环过程中所引起的巨大体积膨胀,会导致Si颗粒的粉碎、电接触失效及其它副反应,最终导致电池容量的快速衰减以及循环稳定性变差。黏合剂是锂离子电池负极的重要组成部分之一,虽然含量很少,但在稳定电极循环中起着关键作用。文中主要对Si基负极电池黏合剂的溶剂类型及聚合结构(包括线型、交联以及共轭导电聚合物)进行了分类,并在黏合机理、优点、局限性以及性能等方面进行了阐述,最后对亟待深入研究的方向和发展前景进行了展望。  相似文献   

16.
原位合成法制备石墨烯/CdS量子点复合材料, 并考察其作为锂离子电池负极材料的电化学性能. 交流阻抗揭示电解质在石墨烯/CdS量子点复合材料表面形成稳定的SEI膜, 首次放电比容量达1264.7mAh/g, 循环20次后可逆容量为888.9mAh/g. 结果显示CdS量子点提高了石墨烯结构的稳定和层间传导性, 从而导致复合材料的电化学性能明显优于单独的石墨烯材料.  相似文献   

17.
亓鹏  朱丁  陈云贵 《功能材料》2012,43(5):657-659
采用湿法混料及高温热解法制备了锂离子电池用硅/石墨/碳复合负极材料,并研究了不同配方的复合材料结构及电化学性能。研究发现,硅含量为20%(质量分数)时,复合材料首次可逆容量为865mAh/g,循环30次后仍为757mAh/g,容量保持率可达88%,大大改善了硅基材料作为锂离子电池负极材料的电化学性能。  相似文献   

18.
梁杰铬  罗政  闫钰  袁斌 《材料导报》2018,32(11):1779-1786
在全球能源与环境问题日趋紧迫的大背景下,可再生能源的获取与利用途径及高效安全的储能技术的研发一直是工业界和科学界关注的热点之一。锂离子二次电池作为能量存储器件,拥有高比能量、长循环寿命等优点,近十几年来其研究取得了长足进展,并在各类便携式电子设备和电动交通工具中获得了广泛应用。然而,随着各种高性能设备的不断涌现,商业化的锂离子电池越来越难以满足其在能量密度、循环稳定性和安全性等方面的要求。为了进一步提高锂离子电池的能量密度,需要开发出高比容量的负极材料(硅、锡和锂等)以取代传统石墨负极。硅、锡等新式负极材料通过与锂离子反应形成含锂化合物的原理来存储与释放锂离子,完成电池的一个充放电过程。这个过程往往伴随着负极材料体积的剧烈变化,经历较长时间循环使用后会导致负极材料的粉化甚至从集流体上剥离,引起电池容量迅速衰减甚至失效。而锂负极通过锂在负极上的溶解和沉积来完成电池的充放电过程,该过程不存在反应相变所导致的体积变化。另外,锂金属负极材料具有极高的质量比容量(3 860mAh/g)、低密度(0.59g/cm3)和低的还原电位(-3.04V,相比于氢标准电极),被认为是一种理想的可充电电池负极材料。然而,锂的枝晶生长、锂金属电池低的库伦效率和锂的无主体沉积引起的体积膨胀等一些关键问题长期以来制约着锂负极的商业应用。锂的每次沉积都会产生枝晶,在充放电循环中,锂枝晶会导致电池内部短路甚至发生爆炸,带来严重的安全问题。除此之外,锂枝晶还会增加负极表面积,新暴露的锂金属会与电解液反应生成固态电解质膜(Solid electrolyte interface,SEI),这会损耗活性材料以及降低电池的库伦效率。为了解决以上问题,研究者们对锂金属电极进行了许多探索,尤其是在锂枝晶生长的机理及其抑制方法方面。一些理论模型如扩散模型、SEI保护模型、电荷诱导生长模型和薄膜生长模型等,以及与这些模型相对应的一些抑制方法如均匀锂离子流法、SEI膜保护法、稳定沉积主体法和静电屏蔽保护法等被提出。这些抑制方法能够在一定程度上缓解锂枝晶的生长问题,但都未能达到商业化应用的要求。本文总结了近几年研究人员针对锂离子电池锂金属负极的一些重要研究,系统地介绍了业内较为认同的枝晶生长模型和影响因素,并着重叙述了抑制枝晶生长的方法及成效,最后就锂金属负极将来的研究方向给出一些建议。  相似文献   

19.
随着环境问题和能源问题的日益突出,传统汽车逐渐走向新能源化。锂离子电池具有放电电压平台高、自放电小、环境友好等优点,被认为是最有前景的新能源汽车动力之一。然而,随着人们对新能源汽车续航能力要求的逐渐提高,进一步提高汽车动力电池的能量密度成为当今社会研究的热点。目前,商业化车用动力锂离子电池的正极材料以磷酸铁锂(LiFePO_4)和三元材料(Li(Ni_xCo_yMn_(1-x-y)) O)为主,负极以石墨为主,其能量密度仅为200~300 Wh·kg~(-1)。因此,提高汽车动力电池的能量密度,研发高能量密度的正负极材料是动力电池的研究方向之一。硅具有4 200 mA h·g~(-1)的超高理论比容量,是制备车用高能量密度型锂离子电池最有前景的负极材料之一。然而,硅在充放电反应中的剧烈体积变化严重阻碍了其商业应用。硅采用合金化反应方式储存锂离子,合金化反应在提供高比容量的同时伴随着300%的体积膨胀。剧烈的体积变化导致活性物质脱落、SEI膜持续形成等问题,进而导致实际使用时电池容量的快速衰减。此外,纯硅属于半导体,本征载流子浓度很低,无法满足电极对导电性的要求。解决上述问题最常用的方法有以下三种:(1)硅的纳米化。锂离子在固体中的扩散较为困难,在外加电场作用下,锂离子在硅中的扩散速度依然很慢。通过硅纳米化的方式可以缩短锂离子从硅表面到中心的扩散距离,有效缩短电池充电时间。(2)硅/碳复合。碳材料具有良好的循环稳定性和导电性,将硅与碳复合,碳可以缓冲硅在合金化反应中剧烈的体积变化,提高整个负极的电子电导率,外层碳壳能阻止硅和电解液的直接接触,形成稳定的SEI膜。(3)微观结构设计。中空核-壳结构、3D多孔结构等特殊结构可以缓解硅的体积膨胀效应,有效抑制电极材料的脱落。研究中经常综合使用上述三种方法来制备高性能纳米硅/碳负极材料,如3D多孔纳米硅/碳材料、中空核-壳纳米硅/碳材料等。本文先阐述了硅锂合金的电化学反应机理与容量衰减的原因,以及纳米硅的制备方法,然后从表面包覆、结构制备、掺杂、MOFs改性等方面对硅/碳复合材料的常见修饰方法进行了综述,并进一步分析了中空核-壳结构、多孔结构等在提高电化学性能上的优势。最后,本文总结了纳米硅/碳作为负极材料的优点与当前遇到的问题,归纳并分析了不同包覆材料、不同包覆方法和不同离子掺杂带来的性能差异及原因,提出未来纳米硅/碳产业化道路上的关键突破点,并展望了其在纯电动汽车领域的应用前景。  相似文献   

20.
铝作为负极材料其理论容量较高,但铝在充放电过程中会出现严重的体积膨胀,导致循环性能差。为克服铝体积膨胀严重的缺点,采用简单的球磨法成功制备出铝/石墨复合材料。利用X射线衍射仪、扫描电子显微镜对复合材料的结构和形貌进行分析。电化学性能测试表明,铝/石墨复合材料首次放电比容量高达1004mAh/g,循环15次后容量保持在300mAh/g。铝/石墨复合材料拥有较高的放电比容量和较好的循环性能,在锂离子电池负极材料中具有潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号