首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drying is a high‐energy‐intensive operation and an important step in the pasta production. In this study, exergy analysis of a four‐step drying system in a farfalle pasta production line using actual operational data obtained from a plant located in Izmir, Turkey, was performed. Exergy loss rates, evaporation rates, exergy efficiencies, and improvement in potential rates for each dryer section were determined in this drying system. The exergy efficiency values varied between 0.25% and 5.27% from the predrying to the final drying section. The exergy efficiency value for the entire drying system was calculated to be 2.96%, and the highest exergetic improvement in potential rate was 165.54 kW for the first dryer section. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Different energy and exergy concepts and methods are presented and applied to a Swedish pulp and paper mill. Flow diagrams show that the exergy content is mostly much less than the energy content of the flows. The largest exergy losses appear in the boilers. Heating processes are highly exergy inefficient. A limited Life Cycle Exergy Analysis (LCEA) shows that the exergy output amounts to over 3 times the spent exergy as non‐sustainable resources. By replacing the present use of non‐sustainable resources, mostly fuel oil, the mill could move towards a truly sustainable process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
在求解热油管道温度场、压力场的基础上,给出了其包括压Yong、压Yong流密度、压Yong传递系数及其常影响因子在内的Yong传递分析指标。对大庆油田某热油管道的应用数值模拟表明:Yong传递分析不仅可对管道输送过程主导势场Yong传递的时空变化规律进行描述,对温度场、压力场二基本势场的协同作用机制作以合理解释,还提出了诸如增大压力可有效提高输油管道的压Yong传递系数等改进输送过程的技术途径。  相似文献   

4.
This paper considers the combination of hydrothermal degradation(HTD)and superheated steam(SHS)drying indisposal and processing of degradable organic wastes in municipal solid wastes(MSW).In SHS drying, a fractionof dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTDoperating temperature.Both energy and exergy analysis are applied to the combined process.The analysis coversranges of dryer inlet temperatures of 202.38-234.19℃ and feed water content of 32.5-65%.Thermal energyanalysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency(TES)by manipulating process variables.The exergy analysis indicates the location,type,and magnitude of the exergylosses during the whole process by applying the second law of thermodynamics.  相似文献   

5.
~~冷凝式燃气热水锅炉节能分析@叶勇军$南华大学建筑工程与资源环境学院!湖南衡阳421001 @寇广孝$南华大学建筑工程与资源环境学院!湖南衡阳421001 @王汉青$南华大学建筑工程与资源环境学院!湖南衡阳421001 @王志勇$南华大学建筑工程与资源环境学院!湖南衡阳421001~~~~~~~~  相似文献   

6.
In the present work, exergy analysis of a coal‐based thermal power plant is done using the design data from a 210 MW thermal power plant under operation in India. The entire plant cycle is split up into three zones for the analysis: (1) only the turbo‐generator with its inlets and outlets, (2) turbo‐generator, condenser, feed pumps and the regenerative heaters, (3) the entire cycle with boiler, turbo‐generator, condenser, feed pumps, regenerative heaters and the plant auxiliaries. It helps to find out the contributions of different parts of the plant towards exergy destruction. The exergy efficiency is calculated using the operating data from the plant at different conditions, viz. at different loads, different condenser pressures, with and without regenerative heaters and with different settings of the turbine governing. The load variation is studied with the data at 100, 75, 60 and 40% of full load. Effects of two different condenser pressures, i.e. 76 and 89 mmHg (abs.), are studied. Effect of regeneration on exergy efficiency is studied by successively removing the high pressure regenerative heaters out of operation. The turbine governing system has been kept at constant pressure and sliding pressure modes to study their effects. It is observed that the major source of irreversibility in the power cycle is the boiler, which contributes to an exergy destruction of the order of 60%. Part load operation increases the irreversibilities in the cycle and the effect is more pronounced with the reduction of the load. Increase in the condenser back pressure decreases the exergy efficiency. Successive withdrawal of the high pressure heaters show a gradual increment in the exergy efficiency for the control volume excluding the boiler, while a decrease in exergy efficiency when the whole plant including the boiler is considered. Keeping the main steam pressure before the turbine control valves in sliding mode improves the exergy efficiencies in case of part load operation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, a comprehensive discussion of energetic, exergetic and environmental aspects of drying systems is presented. Some theoretical and practical limitations on increased energy and exergy efficiencies and discussions of the relations between energy and exergy, and the environment, along with two illustrative examples are presented. A number of issues relating to energy, exergy and the environment are examined from the drying industry perspectives. It is pointed out that exergy is a suitable technique for furthering the goal of more efficient energy‐resource use and it is a key tool to determine the locations, types, and true magnitudes of wastes and losses in the drying systems. It is believed that this paper will provide some guidance to drying industry people in attaining optimum system design and operation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
对流干燥过程节能措施的理论分析   总被引:2,自引:0,他引:2  
本文根据对流干燥过程能量衡算方程式,对干燥过程的节能措施进行了理论分析。  相似文献   

9.
佣分析方法是低温法精馏过程分析,也是空气分离过程节能分析的主要方法。本文使用空分有效能分析(EAASU)系统对唐钢气体公司的40000m。m(标准)空分装置进行了分析,其设计工况的流程效率为45.25%。分析结果表明,气态产品中氧的摩尔l厢最大,液态产品中氩的摩尔炯最大;同种产品中液态摩尔炯大于气态摩尔炯。在相同环境条件和加工空气量的情况下,增加液态产品的产量,尤其是液氩的产量,可以提高空分装置的流程效率。以设计工况作为参照,基于EAASU软件进一步分析了不同产量的流程炯效率,即当液体总产量增加9%,则流程炯效率提高0.65%以上;气氧产量增加10%,则流程炯效率可提高1,56%。  相似文献   

10.
Recently, significant attention has been directed towards the use of exergy analysis in the assessment of thermal and other industrial processes and their environmental impacts since exergy analysis is an effective tool both for achieving efficient energy utilization with minimum (or zero) environmental impact and for understanding environmental issues. In this study, the concepts of exergy analysis and the linkages between exergy and environmental impact are discussed, and several issues regarding the exergies of waste emissions are addressed. Exergy is a measure of the degree of disequilibrium between a substance and its environment. The relations between several measures of environmental impact potential and exergy are investigated by comparing current methods used to assess the environmental impact potential of waste emissions and the exergy associated with those emissions. A case study is presented, to highlight the information revealed using exergy, in which the measures of environmental impact potential considered are the Ontario Ministry of Environment's schedule of industrial air emission limits, and two methods of assessing the environmental costs for air emissions resulting from the combustion of three common fossil fuels: coal, oil and natural gas. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
This study investigates using exergy analysis the technical factors that influence the feasibility of substituting steam supplied for other energy sources in industrial heating. Some alternative configurations for the steam‐supply system capable of broadening the range of industries able to use the steam for heating are proposed. When examining the feasibility of substituting steam for other energy currencies for providing process heat, exergy analysis quantitatively determines the increase in process efficiency when a lower value energy currency such as steam is used in place of a higher value energy currency such as electricity. Many industries can benefit from using steam for some or all of their heating requirements. An illustrative example for the Bruce Energy Center in Ontario, Canada is presented to demonstrate the importance of using exergy analysis to assess the feasibility of industrial steam process heating. Some alternate reconfigurations of the Center are considered to supply steam at a variety of thermodynamic states, and better match the steam‐state requirements of many industries. The results suggest that exergy analysis should be used as the central tool in process optimization when the use of large quantities of the steam in energy centers is contemplated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Energy and exergy analyses previously performed by the authors for a single effect absorption refrigeration system have been extended to double effect vapor absorption refrigeration system with the expectation of reducing energy supply as well as an interest in the diversification of the motive power employed by HVAC technologies. The total exergy destruction in the system as a percentage of the exergy input from a generator heating water over a range of operating temperatures is examined for a system operating on LiBr–H2O solution. The exergy destruction in each component, the coefficient of performance (COP) and the exergetic COP of the system are determined. It is shown that exergy destructions occur significantly in generators, absorbers, evaporator2 and heat exchangers while the exergy destructions in condenser1, evaporator1, throttling valves, and expansion valves are relatively smaller within the range of 1–5%. The results further indicate that with an increase in the generator1 temperature the COP and ECOP increase, but there is a significant reduction in total exergy destruction of the system for the same. On the other hand, the COP and ECOP decrease with an increase in the absorber1 temperature while the total exergy destruction of the system increases significantly with a small increase in the absorber1 temperature. The results show that the exergy method can be used as an effective criterion in designing an irreversible double effect absorption refrigeration system and may be a good tool for the determination of the optimum working conditions of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Energy analysis of a fluidized‐bed drying system is undertaken to optimize the fluidized‐bed drying conditions for large wet particles (Group D) using energy models. Three critical factors; the inlet air temperature, the fluidization velocity, and the initial moisture contents of the material (e.g., wheat) are studied to determine their effects on the overall energy efficiency to optimize the fluidized bed drying process. In order to verify the model, different experimental data sets for wheat material taken from the literature are used. The results show that the energy efficiencies of the fluidized‐bed dryer decrease with increasing drying time and become the lowest at the end of the drying process. It is observed that the inlet air temperature has an important effect on energy efficiency for the material where the diffusion coefficient depends on both the temperature and the moisture content of the particle. Furthermore, the energy efficiencies showed higher values for particles with high initial moisture content while the effect of gas velocity varied depending on the material properties. A good agreement is achieved between the model predictions and the available experimental results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The exergy analysis of chemical processes is a powerful tool for process optimization, taking into account both ecological and economical restrictions. This study deals with the application of exergy analysis to the industrial process of production of white refined sugar beets. Energy and exergy band diagrams are presented. The exergetic performance of the process is calculated. The locations and magnitudes of exergy losses are determined and possible improvements are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
能量的传递和转换必然伴随其"质"--(火用)的传递和转换.能量在传递和转换过程中其量守恒,而炯在传递和转换过程中其量不守恒,因此(火用)必有其独特的传递和转换规律.常规(火用)平衡分析综合热力学第一定律和第二定律,以(火用)效率为评价指标,属于静态热力学研究.参照工程(火用)传递评价准则,提出了堋传递系数、(火用)流密度、(火用)损率等评价指标,并针对某台锅炉机组进行了(火用)传递分析,通过与常规的传热及(火用)平衡分析比较,提供了一些新的技术评价信息.  相似文献   

16.
王华军  王方 《节能技术》2001,19(1):29-30
依据热力学基本定律 ,本文从火用平衡的角度分析了常压锅炉的能量转换利用过程 ,并通过实例计算 ,分析比较了热平衡和火用平衡的各项火用损失。同时指出了常压锅炉节能的主要方向 (减少锅炉内部损失 )和措施。  相似文献   

17.
According to systematic features, analysis method based on exergy balance is established. Basic indicators in the system, the subsystem, and facilities are put forward in this paper. By using this method to analyze the generation system of megawatt‐scale in one chemical enterprise, it is found that the objective exergy efficiency of the system is 35.67%, and exergy loss of organic Rankine cycle (ORC) is the highest. The thermal efficiency of the total system is 9.61%. For the condenser, the thermal efficiency is 91.18%, and the exergy efficiency is only 23.44%. The objective exergy efficiency of the evaporator is 74.04%. The influence coefficient of exergy loss of condenser is higher than that of pump and expander, but input exergy of the condenser is lower than that of the expander. It is revealed that ORC subsystem is the part which needs to be focused on, and the condenser is the most important component of ORC subsystem which should be optimized firstly.  相似文献   

18.
应用能量平衡和(火用)分析方法,对小龙潭火力发电厂300MW机组热力系统能量转换过程进行了定量计算,分析了各个单元的能量有效利用及损失情况,指出了损失的主要部位和原因.结果表明:热量损失主要发生在凝汽器单元,凝汽器散失到周围环境中的热量为411.28 MW,占输入热量的51.57%,锅炉单元散失的热量为52.96 MW,占输入热量的6.64%,汽轮机单元散失的热量为20.40 MW,占输入热量的2.56%;(火用)损主要发生在锅炉单元,锅炉、汽轮机和凝汽器单元的(火用)损分别占输入(火用)的67.78%、18.54%和13%;锅炉中燃料燃烧及大温差传热是整个系统不可逆的主要原因;不同工况下每个单元的(火用)损和(火用)效率会随着环境温度适度改变,但同一工况下机组总的(火用)效率不随环境温度变化.  相似文献   

19.
从热力学原理出发,首次采用分析法研究了金属镁还原系统的损失部位与大小。结果表明:金属镁还原炉的效率很低,排烟损失和绝热燃烧损失都比较大,还原产物带走损失和还原炉体内部损失居次。据此提出了一些提高效率的措施。  相似文献   

20.
饱和器是HAT循环中的关键部件,对其性能的认识关系到整个系统的性能分析。运用的方法,计算了饱和器工质湿空气和水的值,分析了不同参考点的温度和湿度对值的影响规律,以及物理和化学扩散随湿空气温度的变化情况。通过建立饱和器平衡模型,采用了目的效率作为饱和器效率。计算结果表明:湿空气值随参考点的温度和湿度变化规律为:先减小,直到最低点为零,然后不断增加,值始终大于(等于)零,并且与参考点参数差距越大,值越大。当湿空气温度增加,物理所占比重减少,而化学扩散的比重增加,在到达一定温度后,化学大于物理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号