首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the synthesis and surface modification of epoxy‐ and hydroxy‐functional polymeric microspheres. The functionalized microspheres were synthesized using aqueous and nonaqueous cationic suspension photopolymerizations using multifunctional silicon‐containing epoxy monomers with iodonium salt photoinitiators. Although generally solid microspheres were obtained using these techniques, macroporous spheres could be obtained though the use of porogens. Various rapid and facile acid‐ and base‐catalyzed ring‐opening addition reactions were performed on the epoxy‐functional microspheres. These reactions include the additions of mercaptans, acid chlorides, isocyanates, amines, sodium azide, water, and alcohols. Similar functionalization reactions were performed on the hydroxy‐functional microspheres. The particle size and size distribution were determined using scanning electron microscopy. Fourier transform infrared spectroscopy was used to monitor the functionalization reactions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1574–1585, 2005  相似文献   

2.
Low‐temperature helium plasma treatment followed by grafting of N‐vinyl‐2‐pyrrolidone (NVP) onto poly(ether sulfone) (PES) ultrafiltration (UF) membranes was used to modify commercial PES membranes. Helium plasma treatment alone and post‐NVP grafting substantially increased the surface hydrophilicity compared with the unmodified virgin PES membranes. The degree of modification was adjusted by plasma treatment time and polymerization conditions (temperature, NVP concentration, and graft density). The NVP‐grafted PES surfaces were characterized by Fourier transform infrared attenuated total reflection spectroscopy and electron spectroscopy for chemical analysis. Plasma treatment roughened the membrane as measured by atomic‐force microscopy. Also, using a filtration protocol to simulate protein fouling and cleaning potential, the surface modified membranes were notably less susceptible to BSA fouling than the virgin PES membrane or a commercial low‐protein binding PES membrane. In addition, the modified membranes were easier to clean and required little caustic to recover permeation flux. The absolute and relative permeation flux values were quite similar for the plasma‐treated and NVP‐grafted membranes and notably higher than the virgin membrane. The main difference being the expected long‐term instability of the plasma treated as compared with the NVP‐grafted membranes. These results provide a foundation for using low‐temperature plasma‐induced grafting on PES with a variety of other molecules, including other hydrophilic monomers besides NVP, charged or hydrophobic molecules, binding domains, and biologically active molecules such as enzymes and ribozymes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1699–1711, 1999  相似文献   

3.
朱利会  陈爱政  王士斌 《化工进展》2014,33(7):1832-1838
肺部给药作为一种非入侵式的给药方式,在蛋白质、多肽类药物的给药研究中具有很大的发展潜力。高分子多孔微球是最适合肺部给药的药物载体之一,本文首先阐述了高分子多孔微球的几种传统制备方法,分析了这些制备方法在不同的条件下存在的优点及缺点。随后本文针对传统的高分子多孔微球制备条件难以单独控制,药物不能有效包封等问题,对近年来研究者们为了提高多孔微球的性能对其进行的物理化学改性进行了综述并提出了观点。最后对肺部给药用高分子多孔微球不同的制备方法的相互结合以及在生物医学领域的应用价值进行了展望。  相似文献   

4.
The purpose of this study was to enhance blood compatibility of polyethylene (PE) films. Glycidyl methacrylate (GMA) was grafted onto the surface of PE by Ar plasma pretreatment and UV‐induced graft polymerization without photo‐initiator, then heparin was immobilized onto the poly (glycidyl methacrylate) segments. The surface compositions and microstructure of GMA graft polymerized PE films were studied by X‐ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR‐FTIR) spectroscopy. It was confirmed that heparin was successfully immobilized onto the surface of PE films by XPS analysis. The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and plasma recalcification time (PRT) tests and platelet adhesion experiment. Results indicated that the antithrombogenicity of modified PE was improved remarkably. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2014–2018, 2004  相似文献   

5.
单分散的聚合物功能微球具有许多突出优点,如比表面积大、表面反应能力强等。系统地分析和综述了单分散交联聚苯乙烯功能微球的制备方法及应用的最新研究进展,并对该类功能材料的发展前景进行了预测。  相似文献   

6.
When the flax fibers (machine tow) were treated with KMnO4 solution, MnO2 was deposited over‐all the fiber surface. The amount of MnO2 deposited relied on the KMnO4 concentration. Subjecting the flax‐containing MnO2 to a solution consisting of monomer (acrylic acid, AA) and citric acid, CA (or any acid used in this work) resulted in formation of poly(AA)‐flax graft copolymer. Dependence of the polymer criteria, namely, the total percentage conversion (%TC) and the carboxyl content of the grafted flax fibers on various grafting parameters, viz., concentrations of the redox pair as well as AA, material‐to‐liquor ratio (M/R), duration and temperature of polymerization, kind of the acid and kind of the flax fibers pretreatment was studied systematically. The results indicated that the polymerizability of AA molecules, expressed as %TC (i.e., counting both grafting and homopolymerization) and thence the carboxyl content (i.e., evaluating the extent of AA grafting along the flax backbone) was optimized with the following conditions: [AA], 100% (based on weight of flax fibers, owf); [CA], 0.4 meq/1 g flax; [MnO2], 0.4 meq/1 g flax; polymerization temperature, 40°C; polymerization time, 30 min; and the M/R, 1 : 50. A tentative mechanism for grafting of flax fibers with AA using MnO2‐acid redox system was elucidated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3028–3036, 2006  相似文献   

7.
O‐Carboxymethylchitosan (OCMCS) was covalently immobilized onto expanded poly(tetrafluoroethylene) (ePTFE) vascular graft using a photosensitive hetero‐bifunctional crosslinking reagent, 4‐azidobenzoic acid. 4‐Azidobenzoic‐bonded OCMCS (Az‐OCMCS) was prepared by reaction between an acid group of the crosslinking reagent and a free amino group of OCMCS. Immobilization was accomplished by irridiating the A3‐OCMCS coating on the substrate surface with ultraviolet light. Electron spectroscopy and water contact angle were used to characterize that OCMCS had been bonded on the ePTFE vascular graft surface. The hydrophilicity of ePTFE was enhanced greatly by surface bonding with OCMCS. Platelet adhesion assay showed that the ePTFE vascular surface bonded with OCMCS demonstrated good blood‐compatibility. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Monodisperse hydrogel microspheres were prepared by precipitation polymerization of acrylamide and comonomers in ethanol and propan-2-ol and their mixtures. The size of the microspheres varied from 0.2 to 1.3 μm as a function of the solubility parameter of the dispersants. The applicability of the three-component solubility parameter approach by Paine was examined. Seeded polymerization of styrene using the seed microspheres mentioned above yielded unique composite microspheres whose surface property changed gradually with the content of styrene.  相似文献   

9.
ATRP法合成大分子单体及其在微球制备中的应用   总被引:1,自引:1,他引:0  
杨伟  陆剑燕  杨成  刘晓亚  陈明清 《化工进展》2006,25(10):1222-1226
以α-溴代丙酸乙酯(EPN-Br)为引发剂,氯化亚铜(CuCl)与N,N,N′,N″,N″-五甲基二亚乙基三胺(PMDETA)组成的混合体系为催化剂,使甲基丙烯酸叔丁酯(tBMA)进行原子转移自由基聚合(ATRP),得到了端基为溴原子的聚甲基丙烯酸叔丁酯大分子中间体PtBMA-Br。使其末端的Br与甲基丙烯酸发生亲核取代反应,得到甲基丙烯酸封端的大分子单体。FTIR和1H-NMR的分析表明大分子单体结构明确,双键导入率高;再用该大分子单体与苯乙烯分散共聚制得形态规整的高分子微球。  相似文献   

10.
Poly(styrene‐co‐divinylbenzene) microspheres with size ranging from 1.6 to 1.8 μm were prepared in acetic acid by precipitation polymerization. The particle size and particle size distribution were determined by laser diffraction particle size analyzer, and the morphology of the particles was observed with scanning electron microscope. Besides, effects of various polymerization parameters such as initiator and total monomer concentration, divinylbenzene (DVB) content, polymerization time and polymerization temperature on the morphology and particle size were investigated in this article. In addition, the yield of microspheres increased with the increasing total monomer concentration, initiator loading, DVB concentration and polymerization time. In addition, the optimum polymerization conditions for synthesis of monodisperse crosslinked poly(styrene‐co‐divinylbenzene) microspheres by precipitation polymerization in acetic acid were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Films of LDPE containing 1–10 wt % of various polymeric additives were prepared by different techniques. Three poly(ethylene‐graft‐ethylene oxide)s synthesized by grafting poly(ethylene‐co‐acrylic acid) with poly(ethylene oxide) monomethyl ether (MPEO), and two pure MPEOs having molecular weights 750 and 2000 were used as additives. The additives were mixed with LDPE both by blending in a common solvent and by melt mixing. The blends were then solvent cast from xylene onto glass Petri dishes or compression molded between glass plates. The film surfaces were studied by water contact angle measurements and by X‐ray photoelectron spectroscopy (XPS), and melting points and heats of melting were recorded by differential scanning calorimetry (DSC). The blends had a two‐phase morphology, with enrichment of the graft copolymers at the glass–polymer interface, as shown by contact angle values and XPS spectra. Large differences in the interface accumulation between the different film samples were observed. Films prepared by compression molding of solution‐mixed blends exhibited much lower surface accumulation of graft copolymer at the glass–polymer interface than did the solvent cast or melt‐mixed/compression‐molded samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 316–326, 2000  相似文献   

12.
Polythiophene (PTH) and poly(3‐methyl thiophene) (PMT) films were electrochemically polymerized in an electrolyte solution of boron fluoride–ethyl ether. Ozone‐pretreated PTH and PMT films were subjected to UV‐light‐induced graft copolymerization with different monomers, including poly(ethylene glycol) monomethacrylate, acrylic acid, and glycidyl methacrylate. Surface grafting with the hydrophilic polymers gave rise to more hydrophilic PTH and PMT films. The structure and chemical composition of each copolymer surface were studied by X‐ray photoelectron spectroscopy. The surface grafting with the hydrophilic polymers resulted in a more hydrophilic PTH film. The dependence of the density of surface grafting and the conductivities of the grafted PTH and PMT films on the ozone pretreatment was also studied. A large amount of the grafted groups at the surface of the PTH and PMT films remained free for further surface modification and functionalization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
尼龙是一种综合性能优良、应用广泛的工程塑料。通过接枝方法对尼龙材料进行接枝改性,可实现尼龙材料的表面功能化。文章综述了近几年来尼龙表面接枝改性的研究进展,并对其应用前景进行了展望。  相似文献   

14.
Surface modification of various solid polysaccharide substrates was conducted by grafting methyl acrylate (MA) and styrene via atom transfer radical polymerization (ATRP) to produce well‐defined polymer grafts. The hydroxyl groups on the surfaces of the substrates were reacted with 2‐bromoisobutyryl bromide followed by graft copolymerization under ATRP conditions. The studied substrates were filter paper, microcrystalline cellulose, Lyocell fibers, dialysis tubing, and chitosan films. The modified substrates were analyzed by FT‐IR, water contact angle measurements, TGA, and SEM. FT‐IR characterization of the grafted substrates showed significant differences between the different substrates in the amount of grafted polymer. Higher amounts of polymer seem to be possible to graft from native cellulose substrates than from regenerated cellulose substrates. To investigate whether the grafted polymers were “living” after a longer time period, a second layer of polystyrene was grafted from a filter paper modified with PMA one year ago. FT‐IR characterization of the filter paper showed a peak corresponding to styrene, indicating that a block copolymer had been formed on the surface. Graft copolymerization can be used to change and tailor the surface properties of the polysaccharide substrates. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4155–4162, 2006  相似文献   

15.
The catechol functional group of dopamine (3,4‐dihydroxyphenethylamine) has the ability to form strong adhesive bonds to inorganic and organic surfaces in aqueous environments. In this study, novel adhesive polyaspartamides containing catechol pendant groups were synthesized from polysuccinimide through successive aminolysis reactions with quantitative dopamine and ethylenediamine. The adhesion and crosslinking of dopamine‐modified polyaspartamide in aqueous alkaline media was used successfully to modify the surface of various materials (including synthetic polymers, metals, metal oxides, ceramics) using a simple immersion method. Contact angle measurements, SEM and X‐ray photoelectron spectroscopy of the modified surfaces were used to verify the surface coating on a variety of materials with very different inherent wetting properties. These novel biocompatible polymers have potential industrial and biomedical applications as adhesives or coating materials for functional surface modification. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Poly‐L ‐lactide (PLLA) has been used to prepare scaffolds to guide tissue regeneration in tissue engineering research. However, one of the limitations to the use of PLLA as an ideal biomaterial is its high hydrophobicity. To improve the hydrophilicity of PLLA, hydrophilic polymers were grafted onto PLLA membrane surfaces through the combination of photooxidization in hydrogen peroxide and subsequent ultraviolet (UV)‐induced grafting copolymerization in the monomer solution. Three kinds of modified PLLA membranes (i.e., PLLA‐g‐polyhydroxyethyl methacrylate, PLLA‐g‐polyacrylamide, and PLLA‐g‐polymethacrylic acid) were obtained, resulting in the more wettable PLLA membranes. The occurrence of the grafting polymerization was confirmed by attenuated total reflectance infrared spectroscopy (ATR‐IR) and X‐ray photoelectron spectroscopy (XPS) analysis. Surface morphology of the modified PLLA membranes was studied by scan electronic microscopy (SEM). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2163–2171, 2002  相似文献   

17.
Graft copolymerization of acrylamide onto polyethylene terephthalate (PET) using a CO2 pulsed laser was performed to improve water wettability. After laser irradiation in air, the films were placed in the aqueous solution of monomer and then heated to decompose peroxides formed onto the irradiated PET film. Peroxide density was determined spectrophotometrically by means of the iodide method. The grafted PET surfaces were characterized by attenuated total reflectance infrared spectroscopy, scanning electron microscopy, and contact angle measurements. The electron micrographs showed that the grafting changed the surface morphology of the PET film, which is consistent with the infrared spectra of the grafted films. To evaluate the surface hydrophilicity, water drop contact angle was determined. The contact angle decreased as a result of graft polymerization. It was also found that the hydrophilicity is related to the surface morphology and grafting level. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 401–407, 2000  相似文献   

18.
A graft copolymer was synthesized by graft copolymerization of starch with styrene (St) and butyl acrylate (BA), using ferrous sulfate‐hydrogen peroxide redox initiation system. The starch was pregelled in the presence of acrylonitrile (AN) in aqueous alkali at high temperature before graft polymerization. Major factors affecting the polymerization reaction were investigated. It was found that a graft copolymer with higher percentage conversion (PC), graft efficiency (GE) and graft percentage (GP) was obtained by controlling the initiator concentration, concentration, and ratio of monomers and polymerization temperature. The optimum conditions were as follows: H2O2 concentration, 12%; monomer concentration, 120%; St/BA ratio, 1 : 1; polymerization temperature, 65°C. Fourier transform infrared spectroscopy and NMR analyses were used to gain information on the structure of the products. It was demonstrated that St, BA, and AN had been successfully grafted onto starch and ? CN had been saponified into ? CONH2 and ? COO? to a certain degree when pregelling. Scanning electron microscope micrographs showed the coarse structure and broad network. The graft polymerization took place on the surface of starch granule and led to amorphization of the starch structure. Graft polymer had better thermal stability and was endowed with pseudo‐plasticity. It was observed that the starch graft copolymer offers good properties such as water resistance as surface‐sizing agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Methyl methacrylate (MMA) was directly grafted on natural rubber (NR) or sulfur prevulcanized (SP) NR surface. The rubber sheet was primarily treated with argon plasma, followed by exposure to air for generating active functional groups. After immersing in a mixture of 30% hydrogen peroxide and MMA in ethanol and water (1 : 1), the MMA grafting took place after UV‐irradiation for 30–120 min. Results from the contact angle measurement and attenuated total reflection–Fourier transform infrared (ATR‐FTIR) spectroscopy showed that the highest amount of MMA grafting was achieved when using 13 wt % of MMA and UV irradiation time of 60 min. The tensile strength and percentage elongation at break of the modified SPNR sheet, having similar MMA grafting to that of NR, were in acceptable range as indicated in the standard glove's test (ASTM D3577). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2270–2276, 2007  相似文献   

20.
An effective condition of graft polymerization of acrylonitrile onto cellulose fiber in large volume of KMnO4/citric acid aqueous solution was examined and the produced grafted copolymers were characterized by using SEM, NMR, FTIR, XRD, TGA, and DSC in comparison with component homopolymers. Graft yield, GY, obtained by simple weighting method was close to the value obtained by NMR analysis. Significant change of chemical structure in cellulose fiber, other than graft reaction, was not detected by NMR and FTIR measurements, whereas a decrease in the degree of crystallinity by the reaction was detected by XRD measurement. It was pointed out that thermograms for grafted samples resembles with that of cellulose at T < 370°C and become similar with that for polyacrylonitrile at T > 370°C and the mass of residue at 550°C is proportional to the content of polyacrylonitrile (GY) only. It is concluded that thermal decomposition of both polymers occurs almost independently in grafted polymers and thermal stability of cellulose fiber is not improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号