首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In present study, polymer matrix nanocomposites based on polycarbonate as matrix and expanded graphite (EG) as reinforcement were fabricated using a simple solution method followed by hot pressing. Scanning electron microscopy revealed almost uniform dispersion and three dimensional networks of EG particles in the matrix. The dc and ac electrical conductivities of the nanocomposites increased with increasing EG content in the matrix. The electrical percolation threshold was observed between 1 and 2 wt % EG. The improvement in the conductivity of 10 wt % nanocomposite was found more than 13 orders of magnitude higher than that of pure matrix. The dielectric constant (at 1 MHz) of the nanocomposite containing 10 wt % EG was increased to about 137. The significant increase in electrical conductivity, dielectric constant, and dissipation factor for the nanocomposites might be good for the applications in antistatic/electromagnetic interference shielding applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47274.  相似文献   

2.
Foaming behavior of poly(methyl methacrylate) (PMMA)/multi‐walled carbon nanotubes (MWCNTs) nanocomposites and thermally‐insulating, electrical, and mechanical properties of the nanocomposite foams are investigated. PMMA/MWCNT nanocomposites containing various amounts of MWCNTs are first prepared by combining solution and melt blending methods, and then foamed using CO2. The foaming temperature and MWCNT content are varied for regulating the structure of PMMA/MWCNT nanocomposite foams. The electrical conductivity measurement results show that MWCNTs have little effect on the electrical conductivity of foams with large expansion ratio. Thermal conductivities of both solid and foamed PMMA/MWCNT nanocomposites are measured to evaluate their thermally insulating properties. The gas conduction, solid conduction, and thermal radiation of the foams are calculated for clarifying the effects of cellular structure and MWCNT content on thermal insulation properties. The result demonstrates that MWCNTs endowed foams with enhanced thermal insulation performance by blocking thermal radiation. Moreover, the compressive testing shows that MWCNTs improve the compressive strength and rigidity of foams. This research is essential for optimizing environmentally friendly thermal insulation nanocomposite foams with enhanced thermal‐insulation and compressive mechanical properties.  相似文献   

3.
丁腈橡胶/膨胀石墨导电纳米复合材料的制备和性能   总被引:11,自引:0,他引:11  
采用熔融插层法制备了丁腈橡胶/膨胀石墨纳米复合材料。扫描电镜(SEM)研究表明,超声处理后的膨胀石墨薄片厚度为纳米级。透射电镜(TEM)研究证实,膨胀石墨确以纳米级尺寸分散在橡胶基体中。力学性能研究表明,填加5份膨胀石墨时,纳米复合材料的拉伸强度最大,为28·4MPa,是不含膨胀石墨的复合材料的1·8倍。导电性能研究显示,填加10份膨胀石墨时,纳米复合材料的表面电导率和体积电导率分别为1·1×10-9S/cm和1·2×10-9S/cm,是不含膨胀石墨的复合材料的100倍和43倍。  相似文献   

4.
Single‐walled carbon nanotubes (SWCNT)/expanded graphite (EG)/poly(trimethylene terephthalate) (PTT) hybrid nanocomposites were prepared via in situ polymerization. Raman spectroscopy and scanning electron microscopy (SEM) were employed to determine both, purity and morphology of the nanofillers and the dispersion of nanotubes and nanosheets. The electrical and optical properties of thin polymer films based on both “single” nanocomposites and hybrid nanocomposites were studied. For PTT/SWCNT nanocomposites, results confirmed that films optical transmittance decreases as the concentration of SWCNT increases, attaining almost no optical transmittance for 0.3 wt % of nanofiller. Conversely, the electrical conductivity of nanocomposites was found to increase by increasing the nanofiller amount and the σdc values indicate that percolation occurs at a very low SWCNT content (around 0.05 wt %). In the case of PTT/SWCNT + EG nanocomposites, when the content of SWCNT is 0.05%, the hybrid system presents lower conductivity than that corresponding to the “single” nanocomposite. The incorporation of additional EG to the PTT/SWCNT nanocomposite has a small effect on the electrical conductivity but inhibits the transparency of the system. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44370.  相似文献   

5.
In this paper Poly(methylmethacrylate)/Polypyrrole-Graphene Oxide (PMMA/PPy-GO) nanocomposites were prepared using in-situ chemical polymerization method and its structure and properties were studied. Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis confirmed that PPy nanopraticles covered the GO nanosheets surface and PMMA/PPy-GO nanocomposite were prepared successfully. The mechanical, electrical and thermal stability of the PMMA nanocomposites were also investigated using Tensile, Impact, Thermogravimetric analysis (TGA) and four-point probe methods. Correlation between direct morphological observation and final properties demonstrated that network structure formed by PPy-GOs in PMMA matrix. Tensile analysis showed that the addition of 0.4 wt % PPy-GO hybrids lead to 24.4 % enhancement in the Young’s modulus of PMMA compared to 5.0 % improvement that achieved at the same loading level of GO. Electrical conductivity measurement showed that dispersion of PPy-GO in PMMA matrix increased AC conductivity in the range of 8 orders of magnitude compared to PMMA. TGA analysis showed that the thermal stability of the PMMA nanocomposites improved over 20 ?C.  相似文献   

6.
7.
Nanostructured carbon-based polymeric nanocomposites are gaining research interest because of their cost-effectiveness, lightweight, and robust electromagnetic interference (EMI) shielding performance. Till now, it is a great challenge to design and fabricate highly scalable, cost-effective nanocomposites with superior EMI shielding performance. Herein, highly scalable EMI shielding material with tunable absorbing behaviors comprising of low-budget ketjen black (K-CB) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been prepared using simple solvent assisted solution mixing technique followed by hot compression technique. The morphological investigation revealed the homogeneous distribution of K-CB and strong interfacial interaction in PMMA matrix, which validated the strong reinforcement and other intriguing properties of the nanocomposites. The PMMA nanocomposites showed a low percolation threshold (2.79 wt%) and excellent electrical conductivity due to the formation of 3D conductive network like architecture within the polymer matrix. Specifically, the 10 wt% K-CB nanocomposite possessed a superior EMI shielding performance of about 28 dB for X-band frequency range. Further, a huge change in EMI shielding performance of PMMA nanocomposites is observed with varying thickness. The brand new K-CB decorated PMMA nanocomposites are expected to open the door for next-generation cost-effective EMI shielding materials for academic and industrial applications.  相似文献   

8.
Limeng Chen 《Polymer》2010,51(11):2368-23
Polymer nanocomposite foams, products from the foaming of polymer nanocomposites, have received increasing attention in both the scientific and industrial communities. Nanocomposite foams filled with carbon nanofibers or carbon nanotubes with high electrical conductivity, enhanced mechanical properties, and low density are potential effective electromagnetic interference (EMI) shielding materials. The EMI shielding efficiency depends on the electrical conductivity and bubble density, which in turn, depend on the properties of the filler. In the current study, multi walled carbon nanotubes (MWNT) with controlled aspect ratio were used to alter the bubble density in MWNT/poly(methyl methacrylate) (PMMA) nanocomposites. It was found that the nanocomposite foams filled with shorter MWNT had higher bubble density under the same foaming conditions and MWNT concentration. Both the ends and sidewalls of carbon nanotubes can act as heterogeneous bubble nucleation sites, but the ends are more effective compared to the sidewalls. Shorter nanotubes provide more ends at constant MWNT concentration compared to long nanotubes. As a result, the difference in the foam morphology, particularly the bubble density, is due to the difference in the number of effective bubble nucleation sites.  相似文献   

9.
Graphite platelets were expanded by functionalization with inorganic acids followed by strong thermal treatment. The expanded graphite (EG) was exfoliated on the polyacrylonitrile (PAN) matrix through in situ emulsion sonication technique with different proportions of EG. The Ultraviolet‐visible (UV) spectroscopy revealed the interaction between EG and PAN matrix. In Fourier Transform Infrared spectroscopy (FTIR), the chemical interaction between EG and the cyanide group of PAN was evidenced to the formation of PAN/EG composites. The X‐ray diffraction pattern of raw graphite (RG), expanded graphite (EG), polyacrylonitrile (PAN), and PAN/EG nanocomposites were evidenced the dispersion of EG with the PAN matrix. The morphology of EG, PAN, and PAN/EG composites were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile strength of PAN/EG nanocomposite was measured and found to be increased with increase in EG concentrations. The conductivity and impedance of composites were measured as function of EG concentration. It was found that, conductivity of composites gradually increased with the increase in EG loading. Oxygen permeability of PAN/EG was reduced substantially with rise of EG proportion. To investigate the flame retardancy behavior of PAN/EG nanocomposites, the limiting oxygen indexes were calculated. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
《Ceramics International》2020,46(5):5828-5840
Currently, the organic-inorganic hybrid materials have gained tremendous importance due to their unique applications in different technological fields. In this connection, the chemical synthesis of poly(methyl methacrylate) (PMMA) and its binary and ternary nanocomposites by in-situ bulk polymerization with various percentages of reduced graphene oxide (RGO) and hematite nanoparticles (Fe2O3 NPs) is presented. Dielectric properties of binary and ternary nanocomposites are investigated in the frequency range of 25 Hz-1 MHz for each composition. Ternary nanocomposite of PMMA with RGO:Fe2O3 NPs (2:2 wt%) exhibits a substantial enhancement of the dielectric constant up to ≈308 and suppressed dielectric loss of 0.12 at 25 Hz. Appearance of three types of interfaces in ternary PMMA nanocomposites accounts for the superior dielectric properties due to the accumulation of greater number of charges at the interfaces as compared to the binary nanocomposites with only one interface. The same optimized ternary PMMA nanocomposite shows a remarkable improvement in the thermal conductivity (2.04 W/mK), which is attributed to the formation of efficient thermal conducting pathways contributed by the synergic reduction in thermal resistance of both RGO and Fe2O3 NPs (2:2 wt%) relative to the binary nanocomposites PMMA/2 wt% RGO (1.04 W/mK) and PMMA/2 wt% Fe2O3 (0.98 W/mK). Thus, ternary nanocomposites prove to be the excellent candidates for thermal management applications. Furthermore, a comparison of the mechanical strength and thermal stability for all the binary and ternary nanocomposites is presented. In the last section, respective precursors and optimized binary and ternary nanocomposites are characterized by XRD, FTIR and SEM which reveal the strong interaction of respective nanofillers into PMMA matrix.  相似文献   

12.
Electric power system applications demand for high-temperature dielectric materials. The improved performance of polymer nanocomposites requires improvement in their thermal conductivity & stability, dielectric stability and processing technique. However, they often lose their dielectric properties with a rise in temperature. Here, we offer a solution by incorporating electrically conducting material (MXene) and semiconducting inorganic nanoparticles (ZnO NPs) into an insulating PMMA polymer matrix to maintain high dielectric constant, both at the room and high temperature. Therefore, to achieve desirable thermal and dielectric properties is the main objective of the present study based on the homogeneous distribution of the nanofillers by in-situ bulk polymerization assisted by strong sonication in the corresponding polymer. The introduction of MXene and ZnO NPs into the PMMA not only acquires a substantial increment in the dielectric constant, to attain a value 437, with minimum energy loss of 0.36 at 25 Hz, but also improves the thermal conductivity of PMMA up to 14 times by causing the reduction of thermal resistance, which is actually responsible for the poor thermal conductivity of amorphous pure PMMA polymer. More importantly, hybrid PMMA/4:2 wt% MXene:ZnO nanocomposite leads to an excellent thermal stability. Moreover, further characterization of the synthesized nanocomposites by FTIR, SEM and XRD leads to the evaluation of strong interaction of ternary components with PMMA matrix.  相似文献   

13.
Polymeric nanocomposites of high thermal conductivities are developed for their significant potential applications in modern electronics, transportation, and space technologies. Among widely studied nanoscale fillers are carbon nanomaterials of superior thermal transport characteristics, whose incorporation into polymeric matrices may result in nanocomposites that exhibit a good combination of processability and thermal conductivity. In this work we prepared specifically exfoliated few-layer graphene nanosheets (GNs), and dispersed them into two different polymeric matrices, the poly(ethylene-vinyl acetate) copolymer (PEVA) and polyimide (PI). The GNs, generally less than 10 nm in thickness according to X-ray and microscopy characterization results, were found to substantially enhance the thermal transport properties in the resulting polymeric nanocomposite films. The same enhancement was also found in the devices fabricated from the nanocomposites, specifically tubes from melt-extrusion, suggesting significant application potentials of the polymeric/GN nanocomposite materials. The ability for the GNs to impart electrical conductivity into the nanocomposite films was also determined, with the results correlated in terms of the percolation theory. The relative enhancement effects of the GNs at different loadings in the nanocomposite films on thermal and electrical transports are highlighted and discussed.  相似文献   

14.
Carbon nanotubes (CNTs) and carbon black were added to alumina to convert it into a good electrical conductor. Alumina–CNT and alumina–carbon black nanocomposites were fabricated by Spark Plasma Sintering (SPS). The electrical conductivity of alumina–CNT nanocomposites was found to be four times higher as compared to alumina–carbon black nanocomposites due to the fibrous nature and high aspect ratio of CNTs. The electrical conductivity of alumina–CNT nanocomposite increased with increasing grain size due to increasing density of CNTs at the grain boundaries. This effect was not observed for alumina–carbon black nanocomposite due to the particulate geometry of the carbon black.  相似文献   

15.
A constitutive model for tensile behavior of PMMA/clay nanocomposite foams was developed in this study. The elastic modulus of the nanocomposites is affected by the form of clays embedded in the polymer matrix. The reinforcing effect by intercalation of the clays and the detrimental effect by clay agglomeration were considered for the determination of the elastic modulus of the nanocomposites. A viscoelastic model was adapted for the tensile behavior of the material. The developed constitutive equation is expressed in terms of clay morphology and material properties. The aspect ratio of clays and the expansion of clay layer spacing in the intercalated clay clusters were proved to play a vital role in the reinforcing mechanism. For the verification of the constitutive model, Poly(methyl‐methacrylate) (PMMA)/clay nanocomposite foams were manufactured by batch process method and their uniaxial tensile test results were compared with theoretical predictions. Compared with the experimental results, the proposed constitutive equation showed agreement with the experimental test results. POLYM. ENG. SCI. 46:1787–1796, 2006. © 2006 Society of Plastics Engineers.  相似文献   

16.
Polyaniline/zinc composites and nanocomposites were prepared using solution mixing method. Zinc (Zn) particles with an average particle size of 60 μm and zinc nanoparticles with an average particle size of 35 nm were used as fillers in polyaniline (PANI) matrix. Films and coatings of PANI/Zn composites and nanocomposites were prepared by the solution casting method. Electrical conductivity and anticorrosion properties of PANI/Zn composite and nanocomposite films and coatings with different zinc loadings were evaluated. According to the results, electrical conductivity and anticorrosion performances of both PANI/Zn composites and nanocomposites were increased by increasing the zinc loading. Also results showed that the PANI/Zn nanocomposite films and coatings have better electrical conductivity and corrosion protection effect on iron coupons compared to that of PANI/Zn composite.  相似文献   

17.
Expanded graphite (EG) is prepared by microwave irradiation to expandable graphite. A stable aqueous suspension of EG is obtained through dispersing EG into deionized water in the presence of surfactant under ultrasonication. Nanocomposites are prepared by compounding EG aqueous suspension with alkyl acrylate elastomer latex. It is showed that, by the latex compounding method (LCM), EG platelets are finely dispersed in the elastomer matrix. The nanocomposites exhibit remarkable improvements in mechanical properties, wear resistance, and gas barrier property. The prepared compound also shows certain electrical conductivity, but soon loses it after milled on a miller. Meanwhile, a dramatic change in EG network is observed corresponding to the loss of electrical conductivity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
This study investigated the correlation between the electrical conductivity and the micro and nanomorphology of multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites with and without the inorganic fillers montmorillonite (MMT), sepiolite and calcium carbonate (CaCO3). The nanocomposites were prepared by dispersing the MWCNT and fillers through ultrasonication directly in the resin or solvent. For nanocomposites without fillers, the compositions prepared with solvent demonstrated higher electrical conductivities, which correlate with a microscale morphology formed by networks of highly interconnected MWCNT agglomerates. The addition of MMT induced a deleterious effect on the electrical conductivity of the nanocomposites since this filler hinders the formation of MWCNT agglomerate networks. The effect of sepiolite on electrical conductivity is also negative, but in this case, nonmorphological effects are likely of greater importance. The addition of CaCO3 improved the electrical conductivity of the binary nanocomposites under specific conditions. For this filler, a synergic effect was achieved for the composition prepared with solvent, which resulted in an approximately sixfold increase in electrical conductivity relative to the nanocomposite without filler.  相似文献   

19.
Poly (methyl methacrylate)/zirconium dioxide (PMMA/ZrO2) nanocomposites were prepared by the incorporation of ZrO2 nanoparticles in various proportions (2, 4, 6, 8, and 10%) with PMMA matrix by in situ emulsifier-free emulsion polymerization technique. The structural property of PMMA/ZrO2 nanocomposites was studied by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The thermal stability of PMMA/ZrO2 nanocomposites was improved with increasing concentration of ZrO2. The electrical conductivity of composites was measured as function of ZrO2 concentration. The oxygen barrier properties of PMMA/ZrO2 nanocomposites were measured by using gas permeameter.  相似文献   

20.
Novel polypyrrole/modified poly(styrene‐alt‐maleic anhydride) conducting nanocomposites were prepared via emulsion polymerization using sodium dodecyl sulfate as an emulsifier and ammonium persulfate as an oxidant. Modified poly(styrene‐alt‐maleic anhydride) was used as an external dopant for conductivity enhancement of polypyrrole. The conductivity of nanocomposites was measured with a four‐probe method. The maximum electrical conductivity of the nanocomposite was 1.40 S/cm. The data from this research showed that the novel nanocomposite presents good tendency for the removal of heavy metal ions from aqueous solutions. Also the prepared nanocomposites were analyzed for their antioxidant activity using 2,2‐diphenyl‐1‐picrylhydrazyl assay. The results showed that the antioxidant activity of the nanocomposite was 60%. The nanocomposites were characterized by Fourier transform infrared, ultraviolet–visible, Xray diffraction, field emission scanning electron microscopy, and differential scanning calorimetry measurements. POLYM. COMPOS., 36:138–144, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号