首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters.  相似文献   

2.
《Energy》1998,23(4):337-344
A theoretical and experimental exergy analysis of a solar-assisted heat pump for air heating is presented. An experimental prototype that operates as a solar-assisted or as a conventional heat pump was tested to determine exergetic efficiency, total system irreversibility and component irreversibilities. A methodology for determination of the optimum temperature of the working fluid in the evaporation and condensation steps is proposed. The methodology is based on maximization of efficiency in these two parts of the system.  相似文献   

3.
One of the main disadvantages of solar air collectors in practical applications is their relatively low efficiency. In this experimental investigation, the shape and arrangement of absorber surfaces of the collectors were reorganised to provide better heat transfer surfaces suitable for the passive heat transfer augmentation techniques. The performance of such solar air collectors with staggered absorber sheets and attached fins on absorber surface were tested. The exergy relations are delivered for different solar air collectors. It is seen that the largest irreversibility is occurring at the conventional solar collector in which collector efficiency is smallest.  相似文献   

4.
Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second law of thermodynamics. A thorough analysis of heat transfer, work, thermo mechanical, and chemical exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a fractional exergy distribution as a percentage of chemical exergy of the intake. It was found that the hydrogen fuelled engine had a greater proportion of its chemical exergy converted into work exergy, indicating a second law efficiency of 41.37% as opposed to 35.74% for a gasoline fuelled engine due to significantly lower irreversibilities and lower specific fuel consumption associated with a hydrogen fuelled ICE. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine occurs due to a greater amount of convective heat transfer associated with hydrogen combustion. However, this seemingly high available thermal energy or thermal ‘exergy’ is misleading due to the higher cooling load which decreases the power of a hydrogen fuelled ICE. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches.  相似文献   

5.
In this article, a multi-objective exergy-based optimization through a genetic algorithm method is conducted to study and improve the performance of shell-and-tube type heat recovery heat exchangers, by considering two key parameters, such as exergy efficiency and cost. The total cost includes the capital investment for equipment (heat exchanger surface area) and operating cost (energy expenditures related to pumping). The design parameters of this study are chosen as tube arrangement, tube diameters, tube pitch ratio, tube length, tube number, baffle spacing ratio, and baffle cut ratio. In addition, for optimal design of a shell-and-tube heat exchanger, the method and Bell–Delaware procedure are followed to estimate its pressure drop and heat transfer coefficient. A fast and elitist nondominated sorting genetic algorithm (NSGA-II) with continuous and discrete variables is applied to obtain maximum exergy efficiency with minimum exergy destruction and minimum total cost as two objective functions. The results of optimal designs are a set of multiple optimum solutions, called “Pareto optimal solutions.” The results clearly reveal the conflict between two objective functions and also any geometrical changes that increase the exergy efficiency (decrease the exergy destruction) lead to an increase in the total cost and vice versa. In addition, optimization of the heat exchanger based on exergy analysis revealed that irreversibility like pressure drop and high temperature differences between the hot and cold stream play a key role in exergy destruction. Therefore, increasing the component efficiency of a shell-and-tube heat exchanger increases the cost of heat exchanger. Finally, the sensitivity analysis of change in optimum exergy efficiency, exergy destruction, and total cost with change in decision variables of the shell-and-tube heat exchanger is also performed.  相似文献   

6.
In the current study, an experimental analysis of exergy performance for different absorber plates is done. Three types of absorber plates are supplied with different fin arrangements with a variable air mass flow rate. The exergy analysis to evaluate the exergy performance of the solar air heaters uses experimental data for conventional and finned solar air collectors with different arrangements of fins. The main aim of the current study is to compare the exergy performance of the conventional solar air collector with those equipped with fins. The introducing of the fins in different arrangements enhances the absorber surface area, which leads to increased heat transfer. Also, fins induce air turbulence in the flow field, which improves the exergy performance of solar air collector. It is found that the exergy reduces and exergy efficiency enhances with increasing the airflow rate. The traditional flat absorber plate has undesirable exergy loss and exergy efficiency for all ranges of airflow rates. Thus, the flat plate collector presents the most substantial irreversibility, for which the exergy efficiency is the least. However, the results show that the exergy efficiency of inclined staggered turbulators is higher than that of in‐line and staggered turbulators. The optimal value of exergy efficiency is recorded at nearly 77% for the solar air collectors equipped with inclined staggered turbulators compared with other types of configurations.  相似文献   

7.
The effects of varying atmospheric conditions such as temperature, humidity and pressure on the performance of a precooled gas turbine cycle fueled with liquid hydrogen are analyzed. Since the hydrogen temperature at the precooler inlet is very low, the condensation and freezing of water vapor contained in suction air is supposed to occur within the precooler. Due to the condensation of water vapor, the precooling process requires more cryogenic hydrogen. Therefore, the temperature-drop ratio of suction air ? within the precooler decreases. Thermodynamic analysis has revealed that the thermal efficiency and specific output per unit mass flow rate considerably decrease with the increase of humidity ψ, the performance degradation of gas turbine due to atmospheric temperature rise is augmented with the increase of humidity. The humidity ratio between precooler inlet and outlet is also made clear.  相似文献   

8.
《Energy》1998,23(1):51-59
We present the applicable exergy analysis and estimate irreversible losses that are generated during operation of a hybrid air-conditioning cycle with emphasis on a partly closed solar regenerator that is used to regenerate weak desiccant. The desiccant mass-flow rate has been chosen as the fundamental parameter for analysing the system. We find an optimum mass-flow rate for minimum irreversibility, i.e. maximum exergy. Large irreversibilities occur for high ambient vapor pressures, which tend to decrease the system exergy and overall performance of the regenerator.  相似文献   

9.
This paper presents a computational work aimed at investigating the effects of hydrogen addition on the exergy (or availability) balance in a lean burn natural gas spark ignition (SI) engine. A thermodynamic engine cycle simulation was extended to perform the exergy analysis. A zero dimensional, two-zone computational model of the engine operation was used for the closed part of the cycle. The results of the model were compared with experimental data to demonstrate the validation of the model. Exergetic terms, such as exergy transfer with heat, exergy transfer with work, irreversibilities, fuel chemical exergy, and total exergy, were computed based on principles of the second law. The exergetic (the second law) efficiency was also calculated. The results of exergy analysis show that increasing hydrogen content and lean burn have considerably affected the exergy transfers, irreversibilities and second law efficiency. With increasing hydrogen content, the irreversibility produced during combustion decreases, and the second-law efficiency sharply increases at near the lean limit.  相似文献   

10.
In this paper, through introducing an external heat source to the conventional humid air turbine (HAT) cycle, we have studied the performances of the improved humid air gas turbine cycle mainly by exergy analysis method. In order to attain the performance of the humid air gas turbine with external heat source, we compare it with the conventional HAT cycle in detail with different factors such as the pressure ratio, turbine inlet temperature (TIT) and the external circulating water mass flow. The results showed that the specific work of the new system and the humidity ratio of saturator are all increased in some degree. For example, in the same pressure ratio and TIT, when the ratio of the external circulating water mass flow rate with that of the internal water is 0.2, the specific work increases more than 15.2 kJ kg−1a, and the humidity raises at least 2.0 percent points. By introducing the external circulating water into the system, though thermal efficiency of the new HAT cycle is lower than that of the conventional HAT cycle, the exergy efficiency exhibits different results. Generally, when the pressure ratio is over 8, the exergy efficiency for the proposed HAT cycle is higher than the conventional HAT cycle; while less than 8, whether or not the exergy efficiency increases will mainly depend on TIT. In addition, the exergy destructions of components in systems were investigated. Through the comparison of the new system with the conventional HAT cycle, it was found that the exergy loss proportion in combustion declines for the new system, and the proportion of exhaust loss increases. From the viewpoint of total energy system, the HAT cycle with utilization of external heat source is a beneficial way to improve the overall performances of energy utilization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The growing concern for energy, economy and environment calls for an efficient utilization of natural energy resources in developing useful work. An important thermodynamic aspect in gauging the overall energy economy of any physical process is the combined energy and exergy analysis from the identification of process irreversibilities. The present paper makes a comprehensive review pertaining to fundamental studies on thermodynamic irreversibility and exergy analysis in the processes of combustion of gaseous, liquid and solid fuels. The need for such investigations in the context of combustion processes in practice is first stressed upon and then the various approaches of exergy analysis and the results arrived at by different research workers in the field have been discussed. It has been recognized that, in almost all situations, the major source of irreversibilities is the internal thermal energy exchange associated with high-temperature gradients caused by heat release in combustion reactions. The primary way of keeping the exergy destruction in a combustion process within a reasonable limit is to reduce the irreversibility in heat conduction through proper control of physical processes and chemical reactions resulting in a high value of flame temperature but lower values of temperature gradients within the system. The optimum operating condition in this context can be determined from the parametric studies on combustion irreversibilities with operating parameters in different types of flames.  相似文献   

12.
《Exergy》2002,2(4):259-265
Exergy analysis of heat pump—air conditioner systems has been carried out. The irreversibilities due to heat transfer and friction have been considered. The coefficient of performance based on the first law of thermodynamics as a function of various parameters, their optimum values, and the efficiency and coefficient of performance based on exergy analysis have been derived. Based on the exergy analysis, a simulation program has been developed to simulate and evaluate experimental systems. The simulation of a domestic heat pump—air conditioner of 959 W nominal power (Matsushita room air conditioner model CS-XG28M) is then carried out using experimental data. It is found that COP based on the first law varies from 7.40 to 3.85 and the exergy efficiency from 0.37 to 0.25 both a decreasing function of heating or cooling load. The exergy destructions in various components are determined for further study and improvement of its performance.  相似文献   

13.
《Energy Conversion and Management》2005,46(13-14):2053-2067
This paper presents the exergetic analysis and optimization of a transcritical carbon dioxide based heat pump cycle for simultaneous heating and cooling applications. A computer model has been developed first to simulate the system at steady state for different operating conditions and then to evaluate the system performance based on COP as well as exergetic efficiency, including component wise irreversibility. The chosen system includes the secondary fluids to supply the heating and cooling services, and the analyses also comprise heat transfer and fluid flow effects in detail. The optimal COP and the exergetic efficiency were found to be functions of compressor speed, ambient temperature and secondary fluid temperature at the inlets to the evaporator and gas cooler and the compressor discharge pressure. An optimization study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on heat transfer area has been conducted. The exergy flow diagram (Grassmann diagram) shows that all the components except the internal heat exchanger contribute significantly to the irreversibilities of the system. Unlike a conventional system, the expansion device contributes significantly to system irreversibility. Finally, suggestions for various improvement measures with resulting gains have been presented to attain superior system performance through reduced component irreversibilities. This study is expected to offer useful guidelines for system design and its optimisation and help toward energy conservation in heat pump systems based on transcritical CO2 cycles.  相似文献   

14.
The present study aims to establish the optimal performance parameters for the maximum exergy delivery during the collection of solar energy in a flat-plate solar air heater. The procedure to determine optimum aspect ratio (length to width ratio of the absorber plate) and optimum duct depth (the distance between the absorber and the bottom plates) for maximum exergy delivery has been developed. It is known that heat energy gain and blower work increase monotonically with mass flow rate, while the temperature of air decreases; therefore, it is desirable to incorporate the quality of heat energy collected and the blower work. First it is proved analytically that the optimum exergy output, neglecting blower work, and the corresponding mass flow rate depend on the inlet temperature of air. The energy and exergy output rates of the solar air heater were evaluated for various values of collector aspect ratio (AR) of the collector, mass flow rate per unit area of the collector plate (G) and solar air heater duct depth (H). Results have been presented to discuss the effects of G, AR and H on the energy and exergy output rates of the solar air heater. The energy output rate increases with G and AR, and decreases with H and the inlet temperature of air. The exergy-based evaluation criterion shows that performance is not a monotonically increasing function of G and AR, and a decreasing function of H and inlet temperature of air. Based on the exergy output rate, it is found that there must be an optimum inlet temperature of air and a corresponding optimum G for any value of AR and H. For values of G lesser than optimal corresponding to inlet temperature of air equals to ambient, higher exergy output rate is achieved for the low value of duct depth and high AR in the range of parameters investigated. If G is high, for an application requiring less temperature increase, then either low AR or high H would give higher exergy output rate.  相似文献   

15.
A thermoeconomic performance optimization has been carried out for a single pass counter-flow heat exchanger model. In the considered model, the irreversibilities due to heat transfer between the hot and cold stream are taken into account and other irreversibilities such as pressure drops and flow imbalance are ignored. The objective function is defined as the actual heat transfer rate per unit total cost considering lost exergy and investment costs. The optimal performance and design parameters which maximize the objective function have been investigated. The effects of the technical and economical parameters on the general and optimal thermoeconomical performances have been also discussed.  相似文献   

16.
An experimental study was carried out to investigate the effect of using Exhaust Gas Recirculation (EGR) on various exergy terms of an IDI diesel engine cylinder. In this paper also the effectiveness of total in-cylinder irreversibility on Brake Specific Fuel Consumption (BSFC) in a diesel engine is investigated. To serve this aim an exergy analysis is conducted on the engine cylinder which provides all the availability terms by which the evaluation of in-cylinder irreversibilities is possible. The availability terms including heat transfer, inlet and exhaust gases and work output are presented during the engine operation at different load and speeds. To clarify the effect of using EGR in each case, EGR is introduced to the cylinder at various ratios during the tests. Finally, the dependence of total in-cylinder irreversibility and engine BSFC at particular engine operating conditions is introduced and the variations are compared. The results show that using EGR mostly increases the total in-cylinder irreversibility mainly due to extension of the flame region which reduces maximum combustion temperature. Also, the results revealed that the variations of the total in-cylinder irreversibility and engine BSFC follow the same trend especially at high load conditions.  相似文献   

17.
Energy and exergy analyses were previously performed by the authors of a coal-fired steam power plant. These analyses suggest that the steam generator (and its combustion and heat-transfer processes) is the most inefficient plant device and that significant increases in overall plant efficiency are possible by reducing steam-generator irreversibilities. Here, a possible plant alteration is examined to increase the efficiency of the plant by reducing the irreversibility rate in the steam generator. The modification involves decreasing the fraction of excess combustion air from 0.40 to 0.15. The results show that overall-plant energy and exergy efficiencies both increase by 1.4% when the fraction of excess combustion air decreases from 0.4 to 0.15.Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a performance optimization based on ecological coefficient of performance (ECOP) criterion has been carried out for an irreversible air refrigeration cycles. The considered model includes irreversibilities due to finite-rate heat transfer, heat leakage and internal dissipations. The ECOP objective function is defined as the ratio of cooling load to the loss rate of availability (or entropy generation rate). The maximum of the ecological performance criterion and the corresponding optimal conditions have been derived analytically. The effects of irreversibility parameters on the general and optimal performances discussed detailed. The obtained results may provide a general theoretical tool for the ecological design of air refrigerators.  相似文献   

19.
In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical.  相似文献   

20.
In this article, exergy losses of fluid motion in a microchannel are investigated. Thermal, friction and electromagnetic irreversibilities contribute to the total rate of exergy destruction. Additional input power from the externally applied electric field is needed to overcome these irreversibilities and deliver specified rates of mass and heat flow through the microchannel. Different cases of steady-state heat transfer in a non-polarized electromagnetic field are considered. Predicted results of fluid velocity, exergy destruction and optimal Reynolds number are presented and compared successfully against past data and measurements involving exergy destruction. It is shown that exergy destruction increases with stronger magnetic fields and wider microchannels. Furthermore, the optimal Reynolds number (minimizing the rate of exergy destruction) increases at lower microchannel aspect ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号