首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high‐quality, heterogeneous hollow‐fiber affinity membranes modified with mercapto was prepared through phase separation with blends of a chelating resin and polysulfone as membrane materials, poly(ethylene glycol) as an additive, N,N‐dimethylacetamide as a solvent, and water as an extraction solvent. The effects of the blending ratio and chelating resin grain size on the structure of the hollow‐fiber affinity membrane were studied. The effects of the composition of the spin‐cast solution and process parameters of dry–wet spinning on the structure of the heterogeneous hollow‐fiber affinity membrane were investigated. The pore size, porosity, and water flux of the hollow‐fiber affinity membrane all decreased with an increase in the additive content, bore liquid, and dry‐spinning distance. With an increase in the extrusion volume outflow, the external diameter, wall thickness, and porosity of the hollow‐fiber affinity membrane all increased, but the pore size and water flux of the hollow‐fiber affinity membrane decreased. It was also found that the effects of the internal coagulant composition and external coagulant composition on the structure of the heterogeneous hollow‐fiber affinity membrane were different. The experimental results showed that thermal drawing could increase the mechanical properties of the heterogeneous hollow‐fiber affinity membrane and decrease the pore size, porosity, and water flux of the heterogeneous hollow‐fiber affinity membrane, and the thermal treatment could increase the homogeneity and stability of the structure of the heterogeneous hollow‐fiber affinity membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
A chloromethylation polysulfone (CMPSF), having good properties of membrane formation, spinnability, and reactive groups, was synthesized with Friedel–Crafts reaction, which could be used as reactivity matrix membrane materials. The effects of ZnCl2 quantity, monochloro methyl ether quantity, reaction time, and reaction temperature on the chlorinity of CMPSF were investigated. The CMPSF plate matrix membranes were prepared with phase inversion by use of the CMPSF/additive/N,N′‐dimethylacetamide (DMAc) casting solution and CMPSF as membrane materials. The focus of this study was primarily concerned with the relationship among such factors as species and contents of additives, CMPSF content in casting solutions, and temperature of solutions, and the morphological structure of the membrane, pore size, porosity, and water flux of the membrane. It was concluded that these factors had obvious effects on the structure and the performance of the CMPSF matrix plate membrane, which could be improved within a wide range by changing the thermodynamic conditions of the casting solution. The effects of coagulation conditions on the microstructure and performance of CMPSF plate matrix membrane were also studied. It was found that the water flux of the CMPSF plate matrix membrane was at a maximum value by use of 10% DMAC solution as coagulation bath. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2117–2131, 2005  相似文献   

3.
Polysulfone hollow fiber membranes were prepared via the dry-wet spinning process from dope solutions comprised of polysulfone, n-methyl-2-pyrrolidone, polyvinyl-2-pyrrolidone, and dodecylbenzene sulfonic acid, sodium salt. Morphology and performance of the membranes were affected by the compositions of coagulant and dope solution. Pore size and the water flux of the membrane increased by the addition of dodecylbenzene sulfonic acid, sodium salt to water in the coagulation bath, due to the changes of physicochemical properties of the outer coagulant. Addition of dodecylbenzene sulfonic acid, sodium salt to the dope solution also increased the pore size. The absence of polyvinyl-2-pyrrolidone, the pore forming agent, in the dope solution resulted in a remarkable decrease of pore size of the membrane. The distance between the spinneret and coagulation bath affected the membrane structure and performance. The membranes prepared in this study were suitable for hemofiltration in terms of molecular weight cut-off characteristics. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
采用熔融纺丝制得改性聚氨酯系中空纤维膜,通过测试水通量随压力的变化研究了拉伸、热处理温度和热处理时间对改性聚氨酯系中空纤维膜压力响应行为的影响。结果表明,所得膜可发生明显的压力响应行为,且拉伸倍数越大,膜的强度越大,压力响应行为越精确;随热处理温度升高,膜的支撑性变差,压力响应行为变弱;随热处理时间延长,膜形变回复率变低,压力响应行为减弱。  相似文献   

5.
采用干-湿法纺丝工艺,制备聚偏氟乙烯/聚氯乙烯/聚甲基丙烯酸甲酯共混五孔中空纤维膜,分别以聚乙烯吡咯烷酮(PVP)、聚乙二醇1000(PEG1000)和吐温-80为添加剂,改善成膜性能。通过水通量超滤试验、牛血清白蛋白截留试验、拉伸试验以及扫描电子显微镜表征膜的截面分析得出,铸膜液中溶质的质量分数为17%,添加6%PVP时制备的膜综合性能最佳。试验制得的中空纤维膜最大水通量为515.42L/(m2·h),截留率为87.25%。  相似文献   

6.
以聚氨基甲酸酯(PU)为基质相,添加成孔剂及二氧化硅粒子,采用熔融纺丝法制得了具有对压力、温度刺激双重敏感的PU中空纤维膜;研究了膜的水通量随压力、温度的变化,对膜表面形貌进行了表征;并考察了中空纤维膜的截留性能。结果表明:制得的PU中空纤维膜为均质膜;膜孔径分布较窄,87.17%的孔集中在0.15~0.20μm。随着压力、温度上升或下降,膜的水通量相应增大或减小,水通量与压力、温度变化有着明显的相关性。经一次过滤,无机粒子清除率达98.52%~99.78%。  相似文献   

7.
With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted of polyethersulfone (PES), Nmethyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547 L/m2·h and 1.4 μm, respectively. Under 1600dgC of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its’asymmetric structure even after the sintering process.  相似文献   

8.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m-1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m-2·h-1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

9.
The polyvinylidene fluoride (PVDF)/polyvinyl alcohol (PVA) polymer solutions were coated on the outer surface of PVDF matrix hollow fiber membrane. On the principle of the homogeneous‐reinforced (HR) membrane technology, the reinforced PVDF/PVA (RFA) hollow fiber membranes prepared through the dry‐wet spinning method. The performance of the RFA membranes varies with the PVA concentration in the polymer solution and is characterized in terms of pure water flux (PWF), porosity, a mechanical strength test, and morphology observations by a scanning electron microscopy (SEM). The results of this study indicate that PVA can apparently improve the hydrophilicity of the PVDF hollow fiber membranes. The growing enrichment of the hydrophilic components PVA on the membrane surface is determined by X‐ray photoelectron spectroscopy. The RFA membranes have a favorable interfacial bonding between the coating layer (PVDF/PVA) and the matrix membrane (PVDF hollow fiber membrane), as shown by SEM. The elongation at break of the RFA membranes increases much more than that of the matrix membrane that is endowed with the better flexibility of the membrane performance. PWF decreases much more compared with that of the matrix membrane. The RFA membranes have a lower flux decline degree during the process of protein solution and ink solution filtration compared with that of the matrix membrane. POLYM. ENG. SCI., 54:276–287, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m−1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m−2·h−1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

11.
Foam-like materials had attracted great interest as promising absorbent. In this study, thermoplastic polyurethane(TPU) block sponge was synthesized. Polyester(PET) braid tubular reinforced polyurethane(PU) spongy hollow fiber membrane was prepared by a concentric circular spinning method. The method was woven from an outer coated water-blown PU separation layer and inner PET braid tubular. We have developed a simple and useful preparation technique for the PU spongy hollow fiber membrane. For the first time, the PU spongy hollow fiber membrane was prepared using a coating and controlled foaming technique. The influence of toluene isocyanate index on the physical properties, morphology, and structure of flexible PU sponge was discussed in terms of water contact angle(CA), pure water flux(PWF), Fourier Transform Infrared Analysis(FTIR),pressure-responsive property, and pull-out strength. The morphologies of the membranes were investigated by scanning electron microscopy. We have characterized the foams from an intuitive point of view and demonstrated that the dimensional morphology of the membrane was closely related to isocyanate index. The result showed that the surface cell size of the PU sponge hollow fiber membrane gradually decreased with an increase of the isocyanate index. Due to the elasticity of PU at room temperature, the pressure responsive characteristic of the membrane was prepared. When isocyanate index was 1.05, the interface bonding strength of PU spongy hollow fiber membranes reached as high as 0.37 MPa, porosity and PWF were 71.5% and 415.5 L·m~(-2)·h~(-1),respectively.  相似文献   

12.
Polyacrylonitrile (PAN) and polyester (PET) braided hollow tube that used as a special reinforcement are braided from their filaments via two‐dimensional weaving techniques. PAN braided tube reinforced homogeneous PAN hollow fiber membranes and PET braided tube reinforced heterogeneous PAN hollow fiber membranes are prepared by concentric circles squeezed‐coated spinning method. As for PAN hollow fiber membrane, the effects of PAN concentration on the performance of the prepared hollow fiber membranes are investigated in terms of pure water flux, protein rejection, mechanical strength, and morphology observations by a scanning electron microscope (SEM). The interfacial bonding state of the braided tube reinforced PAN hollow fiber membranes is studied by constant speed stretching method. Results show that the breaking strength of two‐dimensional braided tube reinforced PAN hollow fiber membranes is higher than 80 MPa. The structure of separation surface is similar to the structure of an asymmetric membrane. With the increase of polymer concentration, the membrane flux decreases while the retention rate of BSA increase. The membrane porosity and maximum pore size have the same decreasing tendency as the increase of PAN concentration. The results also show that the interfacial bonding state of the PAN two‐dimensional braided tube reinforced homogeneous PAN hollow fiber membranes is better than that of the PET two‐dimensional braided tube reinforced heterogeneous PAN hollow fiber membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41795.  相似文献   

13.
This article describes preparation of temperature‐sensitive poly(vinylidene fluoride) hollow fiber membranes using the dry‐wet spinning technique and investigates effects of air gap length on the structures and performances. In spinning these hollow fibers, N,N‐dimethyl formamide and poly(ethylene glycol) (10,000) were used as the solvent and pore‐forming agent, respectively. The prepared fiber membranes were characterized by scanning electron microscopy, pore size measurement, filtration experiments of pure water flux, and solutes with different molecular weights. The fiber membranes exhibit a quite asymmetric structures consisting of double skin layers situated on the fiber walls, two finger‐like layers near skin layers as well as macrovoids and sponge‐like structures at the center of the fiber cross‐sections. Remarkable changes of pure water flux and retention of solute are observed around 32°C, indicating an excellent temperature‐sensitive permeability. As the air gap length increases, the pore size of fiber membrane decreases, which results in decrease of pure water flux and allows small molecules to permeate through the fiber membrane. POLYM. ENG. SCI., 53:2519–2526, 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
聚醚砜中空纤维膜的制备   总被引:1,自引:1,他引:0  
讨论了在二次成形聚醚砜(PES)中空纤维膜的制备中,PES浓度和不同的填充液对中空纤维膜结构和性能的影响。结果发现:随着PES浓度的增大,中空纤维膜的水通量呈下降的趋势,确定了二次成形PES中空纤维膜制备中PES最佳浓度为24%;不同填充液与溶剂之间的相互扩散速率不同,得到了具有不同结构的聚醚砜中空纤维膜。随着填充液压力的提高,纤维的内径、外径增加,壁厚减小,水通量增大,一般填充液压力为0.020MPa。  相似文献   

15.
The hollow fiber asymmetric matrix membranes were prepared with phase inversion by utilization of the chloromethyl polysulfone/polyethylene glycol/DMAC casting solution and chloromethyl polysulfone as membrane materials. The effects of composition of spinning casting solution and process parameters of dry–wet spinning on the structure of hollow fiber matrix membrane were investigated. Through the reaction between matrix membrane and thiourea, the highly qualified polysulfonebenzylthiourea reactive hollow fiber ultrafiltration membranes were able to afford. The adsorption isotherms of the polysulfonebenzylthiourea hollow fiber membrane for Cd2+ and Zn2+ were determined and the effects of mobile phase conditions and the operating parameters on removal performance of the polysulfonebenzylthiourea hollow fiber membrane for Cd2+ and Zn2+ were also investigated. The experimental results showed that adsorption isotherms of Cd2+ and Zn2+ could be described by the Langmuir isotherm, the polysulfonebenzylthiourea hollow fiber membrane could be operated at high feed flow rate, and a large‐scale removal of Cd2+ and Zn2+ could be realized. According to required recovery of Cd2+ and Zn2+ and the saturation degree of polysulfonebenzylthiourea hollow fiber membrane, the optimum loading amount of Cd2+ and Zn2+ should be selected in the actual removal of Cd2+ and Zn2+. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A high qualified polysulfone hollow fiber affinity membrane modified with mercapto as chelating groups was prepared by phase inversion technology using chlormethyl polysulfone (CMPSF) as membrane matrix materials, through the reaction between thiourea and CMPSF hollow fiber matrix membrane to afford the methyl isothiourium polysulfone and was then alkaline hydrolyzed. The adsorption isotherms of the hollow fiber affinity membrane chromatography for Hg2+ were determined, and the effects of mobile phase conditions and the operating parameters on removal performance of the hollow fiber affinity membrane chromatography for Hg2+ were also investigated. The experimental results showed that adsorption isotherms of Hg2+ could be described by the Langmuir isotherm. Addition of NaCl into feed solution for the increase of ionic strength was harmful for the removal of Hg2+. The recovery of Hg2+ decreased at low pH and the optimum range of pH was from 5.0 to 7.0. The feed concentration had a remote effect on recovery of Hg2+ at the specified loading amount of Hg2+, and the Hg2+ could be removed from different concentration feed solution by the hollow fiber affinity membrane chromatography. The increase of feed flow rate led to slight decrease of recovery of Hg2+ at the specified loading amount of Hg2+. The hollow fiber affinity membrane chromatography could be operated at height feed flow rate and a large scale removal of Hg2+ could be realized. With the increase of load amount, Hg2+ recovery decreased, but the saturation degree of hollow fiber affinity membrane chromatography increased. According to required recovery of Hg2+ and the saturation degree of membrane chromatography, the optimum loading amount of Hg2+ should be selected in the actual removal of Hg2+. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4795–4803, 2006  相似文献   

17.
聚醚砜中空纤维膜的成形条件与形态结构研究   总被引:1,自引:0,他引:1  
采用扫描电镜探讨经双向拉伸聚醚砜(PES)中空纤维膜的纺制工艺条件与结构之间的关系。在膜的中部通入填充液,随着填充液压力的增大,中空纤维膜的壁厚明显减小,同时纤维膜表面的孔明显增多。随着凝固浴质量分数的增加,中空纤维膜表面的孔径先减小后增大,而中空纤维膜接近外表面的皮层逐渐变厚。随着凝固浴拉伸率的提高,中空纤维膜在外径不变的情况下壁厚减小,内表面积增加;纤维变薄而且更为致密。  相似文献   

18.
高佳明  王明  马晓华  许振良 《化工学报》2018,69(11):4879-4886
不锈钢中空纤维膜基膜孔径大,直接涂覆分离层容易产生表面缺陷。在二氧化钛悬浮液中加入聚乙烯醇作为黏结剂,通过真空辅助抽滤法在不锈钢中空纤维基膜表面形成一层均匀的分离层。通过高温烧结得到了TiO2/不锈钢中空纤维复合膜,考察了烧结温度对于TiO2/不锈钢中空纤维复合膜表面分离层形貌和结构的影响。不同烧结温度时,TiO2/不锈钢中空纤维复合膜的表面形貌有所差异;随着烧结温度的升高,不锈钢复合膜的孔径和纯水通量均先升高再下降。当烧结温度为500℃时,表面涂层均匀,孔径分布集中,水通量较高。最后,以SPT-500膜测试了水包油乳液分离效果,分离效率达到99%以上,且具有良好的抗污染性能。  相似文献   

19.
In order to obtain the compatible poly(p-phenylene terephthalamide) (PPTA)/polyvinylidene fluoride (PVDF) blend membranes, the casting solution was synthesized via the in situ polycondensation process and flat sheet blend membranes were successfully prepared through the immersion precipitation phase inversion method in our previous study. In this study, the polycondensation solution was directly used as the spinning dope to fabricate PPTA/PVDF hollow fiber in-situ blend membrane by the dry-wet spinning technique. Hollow fiber membranes were employed to remove the dyes including Congo red (CR) and methylene blue (MB) from the dyeing liquor. Effects of operation conditions on dye rejection and membrane water flux were investigated. With the increase of operation pressure, feed concentration and feed temperature, dye rejection rates gradually decreased, but the rejection value of CR and MB still remained above 99.5%. On the contrary, the permeation water flux basically increased. During the continuous dye filtration of 300 min, hollow fiber membrane can maintain high dye rejection rates and stable water flux. The combination method of physical backwashing and chemical cleaning can effectively alleviate membrane fouling and recover membrane water flux. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48569.  相似文献   

20.
The mixture of inorganic salt LiCl and soluble polymer polyethylene glycol (PEG) 1500 as non-solvent additive was introduced to fabricate hydrophobic hollow fiber membrane of polyvinylidene fluoride (PVDF) by phase inversion process, using N,N-dimethylacetamide (DMAc) as solvent and tap water as the coagulation medium. Compared with other three membranes from PVDF/DMAc, PVDF/DMAc/LiCl and PVDF/DMAc/PEG 1500 dope solution, it can be observed obviously by scanning electron microscope (SEM) that the membrane spun from PVDF/DMAc/LiCl/PEG 1500 dope had longer finger-like cavities, ultra-thin skins, narrow pore size distribution and porous network sponge-like structure owing to the synergistic effect of LiCl and PEG 1500. Besides, the membrane also exhibited high porosity and good hydrophobicity. During the desalination process of 3.5 wt% sodium chloride solution through direct contact membrane distillation (DCMD), the permeate flux achieved 40.5 kg/m2 h and the rejection of NaCl maintained 99.99% with the feed solution at 81.8 °C and the cold distillate water at 20.0 °C, this performance is comparable or even higher than most of the previous reports. Furthermore, a 200 h continuously desalination experiment showed that the membrane had stable permeate flux and solute rejection, indicating that the as-spun PVDF hollow fiber membrane may be of great potential to be utilized in the DCMD process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号