首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A study of pyrolysis of olive cake at the temperature range from 400°C to 700°C has been carried out. The experiments were performed in a laboratory scale tubular reactor under nitrogen atmosphere. The yields of derived gases, liquids, and char were determined in relation to pyrolysis temperature and sweeping gas flow rates, at heating rates of about 300°C min?1. As the pyrolysis temperature was increased, the percentage mass of char decreased whilst gas product increased. The oil products increased to a maximum value of ~39.4 wt% of dry ash free biomass at a pyrolysis temperature of about 550°C in a nitrogen atmosphere with flow rate of 100 mL min?1 and with a heating rate of 300°C min?1. Results showed that the bio-oil obtained under the optimum conditions is a useful substitute for fossil fuels or chemicals.  相似文献   

2.
Recently, much research has been focused on liquid oil from biomass pyrolysis, which is considered as an alternative to conventional fossil fuels. This paper studies the effect of heating rate on both the yields and the chemical composition of the oil product obtained from pyrolysis of esparto which is the most important biomass in Morocco. The pyrolysis experiments of esparto was performed in a fixed bed reactor under argon atmosphere with different heating rate: 50, 150 and 250°C min?1. The maximum conversion of esparto in oil of pyrolysis was obtained with fast pyrolysis 68.5% at 550°C. The FT‐IR and 1H NMR analysis showed that the oil of pyrolysis formed principally by aliphatic compound. The analysis elemental showed that the H/C ratio increase and O/C decrease as the heating rate increase. The PCV improved slightly from 33.5 to 34.8 MJ kg?1. The oil obtained with higher heating rate has chemical properties similar to diesel that can be used with an economic and environmental advantage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Biocrude from biomass: pyrolysis of cottonseed cake   总被引:1,自引:0,他引:1  
Fixed-bed pyrolysis experiments have been conducted on a sample of cottonseed cake to determine the possibility of being a potential source of renewable fuels and chemicals feedstocks, in two different reactors, namely a tubular and a Heinze retort. Pyrolysis atmosphere and pyrolysis temperature effects on the pyrolysis product yields and chemical composition have been investigated. The maximumm oil yield of 29.68% was obtained in N2 atmosphere at a pyrolysis temperature of 550°C with a heating rate of 7°C min−1 in a tubular reactor.  相似文献   

4.
Pyrolysis of waste biomasses was carried out at the temperatures of 450 and 500°C by heating at 5°C min?1. Products were collected from emitted gases in a nitrogen purge stream; condensable liquids in the gases were collected by condensation. Gaseous, condensed liquid products and residual solids were collected and analyzed. Condensates were extracted with ether to recover the bio oils (BOs). The maximum liquid yield was obtained from the pyrolysis of soybean oil cake (SBOC) at 500°C with a yield of 60% ca. The BO was higher in the case of SBOC than that of sunflower oil cake (SFOC) at the temperatures of 450 and 500°C. With increasing temperature, bio char yield from the pyrolysis of SFOC decreased, while the liquid yield increased. The increase in temperature did not significantly affect the product distribution for the pyrolysis of SBOC. The compositions of BOs were similar for both SBOC and SFOC. Phenols, phenol derivatives including guaiacols and alkyl‐benzenes were the most common and predominant in BOs from both the pyrolysis of SBOC and SFOC. Carbon dioxide was the major gas product for both SBOC and SFOC. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.

Apricot stone (Prunus armeniaca L.) was pyrolyzed in a directly heated fixed-bed reactor under nitrogen atmosphere. Effects of sweeping gas flow rates and pyrolysis temperature on the pyrolysis of the biomass were also studied. Pyrolysis runs were performed using reactor temperatures between 400°C and 700°C with heating rate of about 300°C min?1. As the pyrolysis temperature was increased, the percentage mass of char decreased while gas product increased. The product yields were significantly influenced by the process conditions. The bio-oil obtained at 550°C, at which the liquid product yield was maximum, was analyzed. It was characterized by Fourier transform infrared spectroscopy (FT-IR). In addition, the solid and liquid products were analyzed to determine their elemental composition and calorific value. Chemical fractionation of bio-oil showed that only low quantities of hydrocarbons were present, while oxygenated and polar fractions dominated.  相似文献   

6.
Fixed-bed slow pyrolysis experiments have been conducted on a sample of safflower seed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 44% was obtained at the final pyrolysis temperature of 500°C, particle size range of +0.425–1.25 mm, with heating rate of 5°C min−1 and sweep gas (N2) flow rate of 100 cm3 min−1 in a fixed-bed lab-scale reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from safflower seed can be used as a renewable fuel and chemical feedstock with a calorific value of 41.0 MJ/kg and empirical formula of CH1.92O0.11N0.02.  相似文献   

7.
Slow, fast and flash pyrolysis of rapeseed   总被引:3,自引:0,他引:3  
Pyrolysis experiments have been conducted on a sample of rapeseed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 73% was obtained at the final pyrolysis temperature of 550–600 °C, particle size range of +0.6–1.25 mm, and sweep gas flow rate of 100 cm3min−1 (N2) at flash pyrolysis conditions in tubular transport reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rapeseed can be used as a renewable fuel and chemical feedstock.  相似文献   

8.
Laurel extraction residues with zeolite and alumina catalysts were pyrolyzed in a fixed-bed reactor with a constant heating rate of 10°C min–1. The final pyrolysis temperature and sweep gas flow rate were kept constant at 500°C and 100 ml min–1 in all of the experiments, respectively. The influence of catalysts and their ratio (10, 20, 30, 40, and 50% w/w) on the pyrolysis conversion and product yields were investigated in detail. The physicochemical properties of the catalytic bio-oil were determined and compared to those of non-catalytic bio-oil. The catalytic bio-oils were examined using some spectroscopic and chromatographic techniques.  相似文献   

9.
This study reports the experimental results for the pyrolysis of pistachio shell under different conditions in a tubular reactor under a nitrogen flow. For the different conditions of pyrolysis temperature, nitrogen flow rate and heating rate, pyrolysis temperature of 773 K gave the highest bio-oil yield with a value of 27.7% when the heating rate and carrier gas flow rate were chosen as 300 K min−1 and 100 cm3 min−1, respectively. Column chromatography was applied to this bio-oil and its subfractions were characterized by elemental analysis, FT-IR and 1H-NMR. Aliphatic subfraction was conducted to gas chromatography–mass spectroscopy for further characterization. The results for the characterization show that using pistachio shell as a renewable source to produce valuable liquid products is applicable via pyrolysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The black cumin seed cake (BCSC) is a by-product obtained from the black cumin seeds with cold pressing. This by-product can be utilized as a biomass feedstock for conversion to bio-oil with pyrolysis process. The BCSC samples were initially pyrolyzed on a lab-scale pyrolysis system at different values in the ranges of 300-800 °C and 0.050-0.300 L min−1 to determine the effects of operation temperature and N2 flow rate on the yields on products, respectively. Then, the bio-oil in the highest yield (wB = 44.37%) which was obtained at pyrolysis final temperature (450 °C) temperature, heating rate (35 °C min−1), particle size (dp > 850 ??m), and sweeping flow rate of 0.200 L min−1 was characterized by Fourier Transform infra-red (FT-IR) spectroscopy, gas chromatography/mass spectrometry (GC-MS) and column chromatography. Consequently, it was shown that the operating temperature and N2 gas flow rate parameters were effective on the product yields. Also, the important some physico-chemical properties of the pyrolytic oil obtained in high yield were determined as the calorific value of 38.48 MJ kg−1, the empirical formula of CH1.651O0.105N0.042S0.001, the rich chemical content containing many different chemical groups, and the density of 970.25 kg m−3, and the viscosity of 63.42 mm2 s−1. Based on the determined properties of the pyrolytic oil, it was decided that the use of pyrolytic oil derived from the BCSC may possible be for the production of the alternative liquid fuels and finely chemicals after the necessary improvements.  相似文献   

11.

Fixed-bed slow pyrolysis experiments have been conducted on a sample of hazelnut bagasse to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields. The temperature of pyrolysis, heating rate, particle size and sweep gas flow rate were varied in the ranges 350–550° C, 10 and 50° C/min, 0.224–1.800 mm and 50–200 cm3/min, respectively. Under the various pyrolysis conditions applied in the experimental studies, the obtained char, liquid, and gas yield values ranged between 26 and 35 wt%, 23 and 34.40 wt%, and 25 and 32 wt%, respectively. The maximum biooil yield of 34.40% was obtained at the final pyrolysis temperature of 500°C, with a heating rate of 10° C/min, particle size range of 0.425–0.600 mm and a sweep gas flow rate of 150 cm3/min.  相似文献   

12.
The products obtained by fast pyrolysis of biomass can be used as an energy source or chemical raw material. In this study, samples of hazelnut shells, tea bush, and hazelnut knot selected as waste biomass were from the cities of Trabzon and Rize in the Eastern Black Sea Region. Firstly, the waste biomass samples were granulated into four different particle sizes by milling and sieving operations. Fast pyrolysis of the samples with specific mixing rates was carried out in a fixed bed reactor. Additionally, 2 wt% vanadium (V) oxide (V2O5) was used as catalyst to maximize the yield of pyrolysis liquid products. The influence of temperature, heating rate, and particle size on fast pyrolysis yields under both catalytic and noncatalytic conditions were investigated and compared. While the amount of liquid product increased with the addition of catalyst, the amount of solid products decreased. It has been found that the temperature and heating rate parameters are very effective in liquid product yield. In all experiments, the maximum liquid yield was acquired at the same heating rate of 450°C min?1 and the temperature of 450°C with particle size of 0.5 to 1.0 mm. The maximum pyrolysis liquid (bio‐oil) was obtained with catalytic pyrolysis, and this value was 60.58 wt%.  相似文献   

13.
Fluidized bed flash pyrolysis experiments have been conducted on a sample of jatropha oil cake to determine particularly the effects of particle size, pyrolysis temperature and nitrogen gas flow rate on the pyrolysis yields. The particle size, nitrogen gas flow rate and temperature of jatropha oil cake were varied from 0.3 to 1.18 mm, 1.25 to 2.4 m3/h and 350 to 550 °C. The maximum oil yield of 64.25 wt% was obtained at a nitrogen gas flow rate of 1.75 m3/h, particle size of 0.7–1.0 mm and pyrolysis temperature of 500 °C. The calorific value of pyrolysis oil was found to be 19.66 MJ/kg. The pyrolysis gas can be used as a gaseous fuel.  相似文献   

14.
15.
Pyrolysis is a thermal process where organic materials such as biomass and oil are decomposed and lighter materials such as gas, vapor, liquid products, and char are produced. The aim of this study was to investigate the pyrolysis behavior of sewage sludge in different operating conditions. Using a fixed bed, the influence of some important parameters such as pyrolysis temperature, heating rate, particle size, and N2 flow rate on product yields was studied. Results showed that with increase in temperature from 400 to 700°C, the char yield decreased from 30.1 to 7.50%, while the gas yield increased from 35.8 to 52.4%. The gas yield also increased from 46.9 to 49.1% as the heating rate increased from 20 to 60°C/s, while the oil yield increased from 45.2 to 46.8% as heating rate increased to 40°C/s and then the increase leveled off.  相似文献   

16.
Pyrolysis is one of the potential routes to harmless energy and useful chemicals from biomass. The pyrolysis of Albizia amara was studied for determining the main characteristics and quantities of liquid products. Particular investigated process variables were temperature from 350 to 550°C, particle size from 0.6 to 1.25 mm, and heating rate from 10 to 30 °C/min. The maximum bio-oil yield of 48.5 wt% at the pyrolysis temperature of 450°C was obtained at the particle size of 1.0 mm and at the heating rate of 30 °C/min. The bio-oil product was analyzed for physical, elemental, and chemical composition using Fourier transform infrared spectroscopy and gas chromatography spectroscopy. The bio-oil contains mostly phenols, alkanes, alkenes, saturated fatty acids and their derivatives. According to the experimental results, the pyrolysis bio-oil can be used as low-grade fuel having heating value of 18.63 MJ/kg and feedstock for chemical industries.  相似文献   

17.
《Biomass & bioenergy》2006,30(6):592-598
The purpose of this study is to evaluate the amounts of catalytic pyrolysis products of cottonseed cake in steam atmosphere and investigate the effects of both zeolite and steam on pyrolysis yields. The effect of steam was investigated by co-feeding steam at various velocities (0.6:1.3:2.7 cm s−1) in the presence of zeolite (20 wt% of feed). Liquid pyrolysis products obtained at the most appropriate conditions were fractionated by column chromatography. Elemental analysis and FT-IR were applied on both of these liquid products and their sub-fractions. The H/C ratios obtained from elemental analysis were compared with the petroleum products. The aliphatic sub-fractions of the oils were then analysed by capillary column gas chromatography. Further structural analysis of pyrolysis oil was conducted using 1H-NMR spectroscopy. The characterization has shown that the bio-oil obtained from catalytic and steam pyrolysis of cottonseed cake was more beneficial than those obtained from non-catalytic and catalytic works under static and nitrogen atmospheres.  相似文献   

18.
Hydrogen can be cited as prospective source of clean power. In this work hydrogen rich syn-gas generated from the agro-waste, empty cotton bolls was injected into an IC engine in continuous mode along with gasoline. At the air-fuel ratio of 23.40, specific fuel consumption of 0.35 kg kWh?1, the engine could be operated with higher efficiency than with gasoline alone. A distinct reduction in emission characteristics could also be seen. Empty cotton bolls derived after removal of cotton from the flower in field, was first studied for fuel properties. The reasonably high heating value (HHV) of 17.54 MJ kg?1 suggested that it could be a precursor to hydrogen via two stepped thermo-chemical process. The first step involved slow pyrolysis of the biomass at 500 °C for 60 min at a heating rate of 10 °C min?1 yielding 39.71% bio-char by weight. The C, H, N, S and O contents of the produced bio-char was 59.91, 2.91, 0.72, 0.47 and 35.99% respectively and its HHV was 26.7 MJ kg?1. Steam gasification of this bio-char, at 700 °C and water flowrate of 7 mL min?1 exhibited maximum hydrogen yield of 67.42% (v/v) in the syn-gas mixture. Subsequent enrichment of the gas using ethanolamine/ethylene diamine and KMnO4 solutions resulted in more than 90% (v/v) hydrogen in the combustible gas mixture and the test engine could be effectively operated.  相似文献   

19.
This work reports the kinetic study of the pyrolysis of four non-edible oil seeds such as Mahua, Karanja, Niger and Linseed conducted at a heating rate of 5, 10 and 15 °C min−1 under nitrogen atmosphere. The relation between kinetic parameters and degradation rate was observed with respect to temperature and heating rate. The results indicated that the kinetic parameters were very close to each other and directly proportional to temperature and heating rate. The comparison of kinetic parameters related to heating rate concluded that heating rate had a direct affinity towards activation energy and pre-exponential factor. The TG-DTG analysis indicated three stages of thermal degradation during pyrolysis of the oil seeds whereas DSC analysis point towards the endothermic and exothermic pathway of pyrolysis. The presence of hemicelluloses, cellulose and lignin was determined on the basis of degradation temperature and their respective functional groups in the seeds observed by FTIR analysis.  相似文献   

20.
Production of chemical fuels using solar energy has been a field of intense research recently, and two-step thermochemical cycling of reactive oxides has emerged as a promising route. In this process, the oxide of interest is cyclically exposed to an inert gas, which induces (partial) reduction of the oxide at a high temperature, and to an oxidizing gas of either H2O or CO2 at the same or lower temperature, which reoxidizes the oxide, releasing H2 or CO. Thermochemical cycling of porous ceria was performed here under realistic conditions to identify the limiting factor for hydrogen production rates. The material, with 88% porosity and moderate specific surface area, was reduced at 1500 °C under inert gas with 10 ppm residual O2, then reoxidized with H2O under flow of 600 sccm g?1 of 20% H2O in Ar to produce H2. The fuel production process transitions from one controlled by surface reaction kinetics at temperatures below ~1000 °C to one controlled by the rate at which the reactant gas is supplied at temperatures above ~1100 °C. The reduction of ceria, when heated from 800 to 1500 °C, is observed to be gas limited at a temperature ramp rate of 50 °C min?1 at a flow of 1000 sccm g?1 of 10 ppm O2 in Ar. Consistent with these observations, application of Rh catalyst particles improves the oxidation rate at low temperatures, but provides no benefit at high temperatures for either oxidation or reduction. The implications of these results for solar thermochemical reactors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号