首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新能源材料     
《新材料产业》2019,(12):77-79
欧盟研发出能量密度超过310Wh/kg的电动汽车锂硫电池欧盟“地平线2020”框架计划支持的欧洲最关键锂硫电池研究项目——适用于电动汽车的锂硫电池项目(ALISE)目前已研发出能量密度超过310Wh/kg的锂硫电池。该类电池更轻便,能量密度大,且无需关键性原材料。  相似文献   

2.
锂/硫电池是以金属锂为负极、单质硫为正极而构筑的二次电池体系。锂/硫电池具有高的理论能量密度 (2600 Wh/kg), 成为最具发展潜力的高能化学电源体系。但这种基于溶解?沉积反应的锂/硫电池体系仍面临一些无法避免的问题, 包括金属锂负极的显著结构变化、硫正极材料存在的活性物质利用率低和循环性能差等缺点, 制约了锂/硫电池的发展。本文结合近年来关于锂/硫电池的突破进展, 简要阐述了锂/硫电池的研究现状、问题及面临的挑战。  相似文献   

3.
随着科技的发展,人们对储能设备提出了更高的要求,传统的锂离子电池已经接近其容量峰值,难以满足当今社会对其能量密度的要求。锂硫电池具有超高的理论能量密度(2600 Wh·kg-1),有望取代锂离子电池成为下一代高能量密度储能设备。然而,锂硫电池中存在的关键问题,如中间产物多硫化锂的穿梭效应、含硫物种缓慢的反应动力学和硫正极在充放电过程中较大的体积变化等,严重制约了锂硫电池的发展。电纺纳米纤维因其独特的纳米结构,展现出了一些独有的性能,有望在高硫负载量和低电解液等极端条件下解决这些问题。着重评述了电纺纳米纤维在锂硫电池正极、隔膜和夹层这3个方面的材料设计结构以及研究进展,分析了材料性能、结构对锂硫电池性能的影响,指出了电纺纳米纤维面向锂硫电池各部分的研究进展和发展方向。  相似文献   

4.
锂硫电池作为一种新型储能体系,具有高比容量(1 675mAh/g、高能量密度(2 500Wh/kg)以及原材料价格低廉、对环境友好等优势,研究其在电动汽车、无人机、便携式电子设备和智能电网等领域的应用具有重要意义.但锂硫电池的产业化道路仍面临重重阻碍,硫及其还原产物的绝缘性、多硫化物的穿梭效应和锂枝晶等严重影响了电池的...  相似文献   

5.
魏安柯  王磊  王祎 《材料导报》2021,35(13):13052-13057,13066
随着便携式电子设备和电动汽车的发展,目前广泛使用的锂离子电池已不能满足市场的需求,锂硫电池作为一种非常有前途的高能化学电源,因其高理论比容量(1675 mAh?g-1)和高理论能量密度(2600 Wh?kg-1)引起了研究者的广泛关注.然而,在锂硫电池的发展过程中,一些突出的问题制约了其发展,包括硫本征导电性差、充放电前后体积变化大、较差的循环稳定性以及生成的多硫化物易溶解等.相关研究表明,将硫与金属-有机骨架(MOFs)材料复合,构筑成具有特殊微观结构的复合正极材料,可显著改善其导电性、循环稳定性和多硫化物的溶解等问题.本文从锂硫电池的工作原理出发,总结了MOFs作为硫载体的优势特点,综述了近几年MOFs材料在锂硫电池正极方面的研究进展,最后对锂硫电池MOFs基正极材料未来的研究思路与发展趋势进行了分析和展望.  相似文献   

6.
锂硫电池具有很高的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是最具前景的新型电池之一。石墨烯具有优良的导电性和电化学性能,具有开阔的负载硫的表面和空间,是导电性差的硫黄和硫化锂的良好载体,为锂硫电池正极材料提供了新的研发平台。本文介绍了近年来石墨烯及其复合材料应用于锂硫电池中的研究进展,包括石墨烯或氧化石墨烯负载硫、杂原子掺杂石墨烯负载硫、石墨烯三维网格负载硫和石墨烯-多孔炭复合炭材料负载硫等4种石墨烯基-硫正极材料,概述了其锂硫电池的比容量、倍率性能和循环寿命等性能指标。从石墨烯基锂硫电池正极材料的设计和合成的角度,总结了不同微结构特征的石墨烯及其复合材料组装成锂硫电池的性能特点,并分析了材料组成和微结构对电池性能的影响机制。在总结的基础上展望了石墨烯应用于锂硫电池的发展方向。  相似文献   

7.
正2015年11月26日,中科院大连化物所储能技术研究部张华民、张洪章研究团队,成功开发出基于大孔容、高比表面、梯度有序多孔碳材料的碳硫复合正极,用其研制的锂硫一次电池能量密度达到500Wh/kg(650Wh/L)以上。相关研究成果"Lithium Sulfur Primary Battery with Super High Energy Density:Based on the Cauliflower-like Structured C/S Cathode"在线发表在英国  相似文献   

8.
正在动力电池发展早期,磷酸铁锂(LFP)在安全性,成本、高温性能和循环寿命方面具有领先优势,得到了广泛的应用。然而磷酸铁锂较低的能量密度制约了其发展。2017年4月,工信部发布的《汽车产业中长期发展规划》要求动力电池单体比能量达到300Wh/Kg,系统比能量260Wh/Kg;提高电池能量密度成为行业共识。基于磷酸铁锂的动力电池能量密度很难满足此要求,相比之下三元锂电池能量密度较高,可达150-200Wh/kg。目前,三元正极市场以NCM532为主,高镍三元比重有望增加:NCM材料主流型号包括  相似文献   

9.
锂-硫电池因其较高的理论质量能量密度而广为人知.然而,与以重质过渡金属氧化物作为正极材料的传统锂离子电池相比,锂-硫较低的体积能量密度是其实际应用的瓶颈.此外,硫单质通常与轻质导电碳基底材料复合,以实现其电化学循环稳定性.这使得锂-硫电池实际体积能量密度更低.本文通过静电纺丝方法制备了铁酸镍纳米纤维,并将其用作新型载体...  相似文献   

10.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg~(-1))远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。  相似文献   

11.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响.开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题.由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础.锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用.近年来,锂离子电池开始在电动汽车等动力电池领域得到应用.但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高.由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2600 Wh·kg-1)远高于目前广泛使用的锂离子电池.此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点.因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一.硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离.迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面.相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等.此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附.将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能.本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望.  相似文献   

12.
作为新一代的储能体系,锂硫二次电池以高的理论能量密度(2 600 m Ah/g),廉价的正极材料以及环境友好等特点受到广泛的关注。但是,由于硫的绝缘性和充放电过程中体积的膨胀、锂硫之间复杂的电化学反应及其产物多硫化物的溶解性等诸多问题的存在,阻碍了锂硫二次电池走向商业化。本文从无机金属化合物与硫复合、导电高分子与硫复合、纳米碳及其衍生物与硫复合,以及三元复合等方面出发,综述了近年来锂硫电池正极材料的研究现状,并展望了该材料的未来发展趋势。  相似文献   

13.
锂硫电池具有远高于锂离子电池的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是很具应用潜力的电池体系,因此被广泛的研究和关注。然而硫的导电性能差、利用率低以及多硫化物的穿梭效应等问题使得锂硫电池的循环性能不稳定。为了克服穿梭效应的影响,近年来发展了多种新型的多硫化物阻隔层设计和制备方法来提高电池循环稳定性,本文分别从碳质材料阻隔层、金属氧化物阻隔层以及导电聚合物阻隔层三方面综述了最新的研究进展,并指出免集流体正极材料、阻隔层以及隔膜实现一体化设计将成为锂硫电池研究的发展方向。  相似文献   

14.
“双碳”战略要求新型储能器件具备更高的能量密度和更低的成本。锂硫电池因其低成本、环保和高比能(2600 Wh kg-1)等优势,而成为储能领域中最具潜能的电池体系,已受到了广泛的关注及研究。近年来,锂硫电池已取得了系列进展,但仍面临一些问题与挑战,包括硫固有的电荷传输效率差、可溶性多硫化物的“穿梭效应”、充放电过程中的剧烈体积膨胀及锂枝晶的生长等,这些问题会导致锂硫电池性能下降甚至失效。碳基硫宿主具有多孔、高电导、轻质、大比表面积等优点,能够有效解决以上难题,已成为锂硫电池研究领域中的重要方向。而碳材料种类繁多,有碳纳米纤维、碳纳米管、碳纳米片、碳纳米花等,不同形貌或具备不同纳米尺度维度的碳纳米结构对锂硫电池的性能具有不同的影响规律。基于此,本文围绕高性能锂硫电池碳基硫宿主进行综述,分类综述了一维、二维、及多维复合碳材料在锂硫电池领域的应用及其性能,阐述不同维度碳基硫宿主对其电化学性能的影响规律,并对未来的研究方向进行了一定的展望。  相似文献   

15.
在能源危机的驱使下,电动汽车以及大型储能装置的快速发展需要高能量密度的锂二次电池来实现,锂硫电池硫电极因具有高理论比容量和能量密度而倍受关注。此外,单质硫具有储量丰富、成本低和无毒等优点,使得锂硫电池更具有商业竞争力,因此锂硫电池被认为是最有前途的二次电池之一。然而,锂硫电池依然存在电导率低、穿梭效应、体积膨胀和锂枝晶等问题,这限制其广泛应用。因此,研究者们从正极材料和夹层着手,除了对正极材料的导电性加以改善之外,主要从限制多硫化物的穿梭效应和缓冲正极体积膨胀进行研究。研究发现,相比碳基和聚合物基正极材料,金属化合物基正极材料可以更好地改善锂硫电池的倍率性能和循环稳定性。此外,金属化合物材料作为夹层时同样可以有效缓解这些问题,能够更好地抑制多硫化物的溶解和扩散,减少穿梭效应,提高锂硫电池的电化学性能。一些金属氧化物、金属硫化物、金属氮化物、金属磷化物等作为锂硫电池正极材料或夹层都取得了重大进展。对于部分极性金属化合物而言,其不仅能化学吸附充放电中间产物多硫化物,有效改善硫正极的循环稳定性,而且还能在氧化还原反应中表现出电催化活性,加快多硫化物的转化,提高硫正极的倍率性能。本文综述了近年...  相似文献   

16.
<正>金属锂具有极高的理论比容量与极低的氧化还原电位,有望成为下一代负极材料。当其与转换反应型硫基和氟基正极匹配时,有望得到能量密度高达500~900Wh/kg的锂金属电池(LMBs)。然而,负极端锂枝晶的生长蔓延容易导致锂金属电池循环稳定性变差,且具有电池短路的安全风险;挤压出来的锂  相似文献   

17.
<正>随着移动通讯、便携式电子设备、空间技术和电动汽车等领域的迅速发展,以及人们节能环保意识的不断提高,发展具有更高比能量、更长循环寿命、低成本和绿色环保的新型锂离子电池具有十分重要的意义[1]。相对其他锂离子二次电池,锂硫二次电池在能量密度方面具有较为明显的优势,理论值可达2600Wh/kg,实际能量密度也达到了730Wh/kg左右[2]。此外,单质硫储量丰富、成本低廉、对环境友好、在安全性能方面也具有明显优势,  相似文献   

18.
在近20多年的发展过程中,锂离子电池已经越来越接近于其理论能量密度的极限,并且随着化石能源消耗和电动车需求量的增加,锂离子电池已经不能满足于社会的需要,寻找可替代的绿色新能源也变得愈发重要。其中,锂硫电池是最有希望代替锂离子电池,成为下一代电化学储能系统的电池之一。由于硫的无毒性、低成本和高的能量密度等优势,使得锂硫电池吸引了研究者们的广泛关注。硫作为锂硫电池中非常重要的一部分——正极材料,对于电池的循环寿命、循环稳定性、能量密度、库伦效率等方面产生了非常重要的影响。但是锂硫电池中存在的关键问题亦限制了其实际应用,例如硫的导电性差、多硫化物中间体的"穿梭效应"、较低的硫负载量、大的体积膨胀以及复杂的内部反应机理等。为了提高锂硫电池整体的性能,设计具有高的比表面积、优越的导电性以及更多的活性位点的基底材料来负载硫变得越来越重要。为解决这些问题,研究者们设计了各种不同材料来进行硫的负载,例如碳-硫复合材料、金属氧化物-硫复合材料、聚合物-硫复合材料等。其中由于碳材料具有密度低、比表面积大、导电性好、结构多样、易于加工制备和价格低廉等优点,引起了研究者们的广泛关注,因此研究者们相继实现了用一维、二维以及三维等不同结构的碳材料来负载硫,使得锂硫电池的循环寿命、循环稳定性和库伦效率得到了有效的提高。虽然在循环寿命等方面,研究者们做出了很大的贡献,但是硫的负载量却有限,从而导致电池整体的能量密度仍然很低。从商业化的角度来看,电池能量密度的高低才是研究者们关注的重点,因此研究者们在提高其性能的同时,也在不断地提高硫的负载量,以求达到更高的能量密度。本文主要从四个方面进行了相关总结:首先,概述了锂硫电池最新发展状况;其次,概要介绍了锂硫电池中存在的反应机理和阻碍锂硫电池发展的主要问题;再次,重点总结了提高锂硫电池的性能和载硫量方面的研究进展,并简单介绍了面载量、面容量和电解液与硫的比值对电池整体性能的影响;最后,总结和展望了锂硫电池未来可能的发展方向。  相似文献   

19.
《功能材料》2021,52(5)
锂硫电池具有1 675 mAh·g~(-1)的理论比容量,丰富的硫资源,低成本和环境友好等优点,将是下一代最具潜力的高能量密度储能电池之一。然而单质硫的绝缘性、多硫化物的穿梭效应以及活性硫的低含量和低面载量等问题,是导致锂硫电池的实际能量密度低、容量衰减快的主要原因。锂硫电池正极材料的设计与构筑至关重要,自支撑的硫正极材料不需要传统的铝箔集流体,能有效改善活性硫的"两低"问题和提高锂硫电池的电化学性能。综述了自支撑硫正极材料的基体类型及其制备方法对锂硫电池电化学性能的影响,分析了目前自支撑硫正极材料存在的缺陷与问题,并对其未来的发展进行展望。这对开发新型硫正极材料来改善锂硫电池的电性能有着重要意义。  相似文献   

20.
在近二十多年的发展过程中,锂离子电池已经越来越接近于其理论能量密度的极限,并且随着化石能源消耗和电动车需求量的增加,锂离子电池已经不能满足于社会的需要,寻找可替代的绿色新能源也变得愈发重要。其中,锂硫电池是最有希望代替锂离子电池,成为下一代电化学储能系统的电池之一。由于硫的无毒性、低成本和高的能量密度等优势,使得锂硫电池吸引了研究者们的广泛关注。硫作为锂硫电池中非常重要的一部分——正极材料,对于电池的循环寿命、循环稳定性、能量密度、库伦效率等方面,产生了非常重要的影响。但是锂硫电池中存在的关键问题亦限制了其实际应用,例如硫的导电性差、多硫化物中间体的穿梭效应、较低的硫负载量、大的体积膨胀以及复杂的内部反应机理等。为了提高锂硫电池整体的性能,设计具有高的比表面积、优越的导电性以及更多的活性位点的基底材料用来负载硫变得越来越重要。为解决这些问题,研究者们设计了各种不同材料来进行硫的负载,例如碳-硫复合材料,金属氧化物-硫复合材料,聚合物-硫复合材料等。其中由于碳材料具有密度低、比表面积大、导电性好、结构多样、易于加工制备和价格低廉等优点,引起了研究者们的广泛关注,因此研究者们相继实现了一维、二维以及三维等不同结构的碳材料用来进行硫的负载,使得锂硫电池的循环寿命、循环稳定性和库伦效率得到了有效的提高。虽然在循环寿命等方面,研究者们做出了很大的贡献,但是硫的负载量却有限,从而导致了电池整体的能量密度仍然很低。从商业化的角度来看,电池能量密度的高低才是研究者们关注的重点,因此研究者们在提高其性能的同时,也在不断地提高硫的负载量,以求达到更高的能量密度。本篇综述主要从四个方面进行了相关总结:首先,概述了锂硫电池最新发展状况;其次,概要介绍了锂硫电池中存在的反应机理和阻碍锂硫电池发展的主要问题;再次,重点总结了提高锂硫电池的性能和载硫量方面的研究进展;最后,总结和展望了锂硫电池未来可能的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号