首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: The swelling and adsorption behavior of a series of hydrophobic poly[(N‐(3‐(dimethylamino)propyl)methacrylamide)‐co‐(lauryl acrylate)] [P(DMAPMA‐co‐LA)] hydrogels was studied as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). Between 0 and 41.7 mol‐% of lauryl acrylate (LA) were used as a hydrophobic comonomer in the hydrogel synthesis. In SDS solutions, the equilibrium swelling ratio of the hydrogels decreased with increasing temperature. At SDS concentrations below 0.0083 M , the hydrogels exhibited an almost linear swelling behavior. However, for SDS concentrations above 0.0083 M , non‐linear swelling behavior was observed in the range 28–36 °C. In contrast to the SDS solutions, in all DTAB solutions the equilibrium swelling ratio of the hydrogels increased with increasing temperature and a positive temperature sensitive property was shown for all P(DMAPMA‐co‐LA) hydrogels. The adsorption capacities of the hydrogels in aqueous solutions of SDS and DTAB were determined via surface tension measurements. An increase in the LA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media.

Effect of the DTAB concentration on the adsorption capacities of P(DMAPMA‐co‐LA) hydrogels.  相似文献   


2.
Poly(N‐(hydroxymethyl)methacrylamide‐1‐allyl‐2‐thiourea), (poly(NHMMA‐ATU)) hydrogels were synthesized by γ radiation, using 60Co γ source at different radiation doses, to change the porosity and crosslinking density of the hydrogels. The percent of 1‐allyl‐2‐thiourea (ATU) in the monomer mixture before the irradiation was varied between 2.5% and 10.0%, to increase the content of ATU, which was involved in some different applications in the hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis, and the swelling experiments were used to characterize the poly(NHMMA‐ATU) hydrogels synthesized in this study. Characterization results of hydrogels showed that crosslinking density of the hydrogels was increased by the increasing radiation dose and ATU content in the irradiated mixture. Swellability of these hydrogels was found to be high enough to allow the metal ions and biomolecules getting inside the hydrogels to interact with all active groups on/in the hydrogels in the adsorption applications. Equilibrium swelling ratio of the hydrogels at pH 0.5 is at least half of the equilibrium swelling ratio of the hydrogels at pH 7.0. Oscillatory swelling behavior of poly(NHMMA‐ATU) hydrogels between pH 0.5 and pH 7.0 showed that the hydrogels are quite stable at different pH conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1657–1664, 2006  相似文献   

3.
Hydrophobically modified poly[2‐(diethylamino)ethylmethacrylate‐co‐N‐vinyl‐2‐pyrrolidone/octadecyl acrylate) [P(DEAEMA‐co‐NVP/OA)] hydrogels were synthesized by free‐radical crosslinking copolymerization of 2‐(diethylamino)ethylmethacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (NVP) with different amounts of hydrophobic comonomer octadecyl acrylate (OA) in tert‐butanol with ethylene glycole dimethacrylate (EGDMA) as a crosslinker. The swelling equilibrium of the hydrogels was investigated as a function of temperature and hydrophobic comonomer content in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the type and concentration of surfactant solutions. Additionally, the amount of the adsorbed SDS and DTAB molecules onto the hydrogels was determined by fluorescence measurements. An increase of OA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3771–3775, 2007  相似文献   

4.
Various problems, including high crystallinity, high melting temperature, poor thermal stability, hydrophobicity and brittleness, have impeded many practical applications of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV) as an environmentally friendly material and biomedical material. In the work reported here, multi‐block copolymers containing PHBV and poly(ethylene glycol) (PHBV‐b‐PEG) were synthesized with telechelic hydroxylated PHBV as a hard and hydrophobic segment, PEG as a soft and hydrophilic segment and 1,6‐hexamethylene diisocyanate as a coupling reagent to solve the problems mentioned above. PHBV and PEG blocks in PHBV‐b‐PEG formed separate crystalline phases with lower crystallinity levels and lower melting temperatures than those of phases formed in the precursors. The crystallite dimensions of the two blocks in PHBV‐b‐PEG were smaller than those of the corresponding precursors. Compared to values for the original PHBV, the maximum decomposition temperature of the PHBV block in PHBV‐b‐PEG was 16.0 °C higher and the water contact angle was 9° lower. In addition, the elongation at break was 2.8% for a pure PHBV fiber but 20.9% for a PHBV/PHBV‐b‐PEG fiber with a PHBV‐b‐PEG content of 30%. PHBV‐b‐PEGs can overcome some of the disadvantages of pure PHBV; it is possible that PHBV might be a good candidate for the formulation of environmentally friendly materials and biomedical materials. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Amphiphilic copolymers of poly(styrene‐co‐2‐hydroxyethyl acrylate) (SHEA) and poly(styrene‐coN, N‐dimethylacrylamide) (SAD) of different compositions were prepared by free radical copolymerization and characterized by different techniques. Depending on the nature of the solvent and the densities of interacting species incorporated within the polystyrene matrices, novel materials as blends or interpolymer complexes with properties different from those of their constituents were elaborated when these copolymers are mixed together. The specific interpolymer interactions of hydrogen bonding type and the phase behavior of the elaborated materials were investigated by differential scanning calorimetry (DSC) and Fourier transform infra red spectroscopy (FTIR). The specific interactions of hydrogen bonding type that occurred within the SHEA and within their blends with the SAD were evidenced by FTIR qualitatively by the appearance of a new band at 1626 cm?1 and quantitatively using appropriate spectral curve fitting in the carbonyl and amide regions. The variation of the glass transition temperature with the blend composition behaved differently with the densities of interacting species. The thermal degradation behavior of the materials was studied by thermogravimetry. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Temperature‐sensitive poly[(2‐diethylaminoethyl methacrylate)‐co‐(N,N‐dimethylacrylamide)] [P(DEAEMA‐co‐DMAAm)] hydrogels with five different DMAAm contents were synthesized with and without the addition of sodium carbonate as porosity generator. The synthesized hydrogels were characterized with dry gel density measurements, scanning electron microscopy observation and the determination of swelling ratio. The influence of the pore‐forming agent and content of DMAAm on swelling ratio and network parameters such as polymer–solvent interaction parameter (χ), average molecular mass between crosslinks (M?c) and mesh size (ζ) of the cryogels are reported and discussed. The swelling and deswelling rates of the porous hydrogels are much faster than for the same type of hydrogels prepared via conventional methods. At a temperature below the volume phase transition temperature, the macroporous hydrogels also absorbed larger amounts water compared to that of conventional hydrogels and showed obviously higher equilibrated swelling ratios in aqueous medium. In particular, the unique macroporous structure provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling and swelling processes. These properties are attributed to the macroporous and regularly arranged network of the porous hydrogels. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying porosity generation methods during the polymerization reaction. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
Hydrogels of N‐vinylimidazole and sodium styrenesulfonate were synthesized by radical crosslinking copolymerization. Transient swelling measurements in water, at room temperature, reveal an unusual behavior. For some gel compositions, the swelling time dependency is about a δ function: dry hydrogel pellets swell up readily to reach a high degree of swelling and, spontaneously, they deswell to collapse. Such peculiarity was interpreted in terms of several competing events in the swelling mechanism: water diffusion toward the gel, chain disentanglement, sodium–proton interchange through the gel–external bath boundary, approaching of chains to allow interaction of sulfonate groups with neighboring protonated imidazole moieties and diffusion of water outside the gel. The results of cyclic swelling–deswelling following abrupt changes of composition in the external bath, from water to sodium hydroxide solution, support that mechanism. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 191–200, 2002  相似文献   

8.
In order to modify poly [(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV), the crosslinking of this copolymer was carried out at 160 °C using dicumyl peroxide (DCP) as the initiator. The torque of the PHBV melt showed an abrupt upturn when DCP was added. Appropriate values for the gel fraction and crosslink density were obtained when the DCP content was up to 1 wt% of the PHBV. According to the NMR spectroscopic data, the location of the free radical reaction was determined to be at the tertiary carbons in the PHBV chains. The melting point, crystallization temperature and crystallinity of PHBV decreased significantly with increasing DCP content. The effect of crosslinking on the melt viscosity of PHBV was confirmed as being positive. Moreover, the mechanical properties of PHBV were improved by curing with DCP. When 1 wt% DCP was used, the ultimate elongation of PHBV increased from 4 to 11 %. A preliminary biodegradation study confirmed the total biodegradability of crosslinked PHBV. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The thermal degradation of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐HV)] was studied using thermogravimetry (TG). In the thermal degradation of PHB, the temperature at the onset of weight loss (To) was derived by To = 0.97B + 259, where B represents the heating rate (°C/min). The temperature at which the weight loss rate was maximum (Tp) was Tp = 1.07B + 273, and the final temperature (Tf) at which degradation was completed was Tf = 1.10B + 280. The percentage of the weight loss at temperature Tp (Cp) was 69 ± 1% whereas the percentage of the weight loss at temperature Tf (Cf) was 96 ± 1%. In the thermal degradation of P(HB‐HV) (7:3), To = 0.98B + 262, Tp = 1.00B + 278, and Tf = 1.12B + 285. The values of Cp and Cf were 62 ± 7 and 93 ± 1%, respectively. The derivative thermogravimetric (DTG) curves of PHB confirmed only one weight loss step change because the polymer mainly consisted of the HB monomer only. The DTG curves of P(HB‐HV), however, suggested multiple weight loss step changes; this was probably due to the different evaporation rates of the two monomers. The incorporation of 10 and 30 mol % of the HV component into the polyester increased the various thermal temperatures (To, Tp, andTf) by 7–12°C (measured at B = 20°C/min). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2237–2244, 2001  相似文献   

10.
As a biodegradable functional polymer, poly[(sodium acrylate)‐co‐(4‐vinylpyridine)] [P(SA‐co‐4VP)] containing a small amounts of 4‐vinylpyridine groups were prepared and their biodegradability, dispersity, and complex performance were analyzed. The polymers can be useful as detergent builders and dispersants. It was found that the biodegradation of P(SA‐co‐4VP) was more conspicuous when content of the 4‐vinylpyridine in the copolymer was larger. This indicates that the 4‐vinylpyridine, which acts as biodegradable segments, should be incorporated into the polymer main chain in such a manner that they are digested by activated sludge. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1953–1957, 1999  相似文献   

11.
In this report we outline recent work on the evaluation of magnesium carbonate‐based flame retardants for polymers commonly used in halogen‐free flame retardant wire and cable applications: poly(ethylene‐co‐vinyl acetate) (EVA) and poly(ethylene‐co‐ethyl acrylate) (EEA). Natural magnesium carbonate (magnesite), synthetic magnesium carbonate (hydromagnesite), and hydromagnesite/huntite blends were combined with EVA or EEA and tested for flame retardancy effectiveness with the cone calorimeter. The flammability results showed that the effectiveness of these carbonates was polymer dependent, suggesting that polymer degradation chemistry played a role in the flammability reduction mechanism. Hydromagnesites were, in general, more effective in reducing flammability, being comparable in performance to magnesium hydroxide. Finally, we report some polymer–clay (organically treated montmorillonite and magadiite) + magnesium carbonate flame retardant results which showed that the nanocomposite yielded mixed results. Specifically, the polymer–clay nanocomposite samples did not always yield the greatest reductions in peak heat release rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Magnetic‐field‐sensitive gel, called ferrogel, was prepared by a two‐step procedure in which first step requires synthesis of the poly(Ntert‐butylacrylamide‐co‐acrylamide) [P(NTBA‐co‐AAm)] hydrogel and during second step magnetite (Fe3O4) particles were formed in the hydrogel via coprecipitation of Fe(II) and Fe(III) ions in alkaline medium at 70°C. The obtained ferrogel was characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy combined with energy dispersive spectroscopy, and electron spin resonance measurements. The magnetic responsive of the ferrogel was also investigated by applying magnetic field to the ferrogel. The extent of a bending degree of the ferrogel depends on the applied magnetic field strength. In addition, the magnetic responsive studies also indicated that formed magnetite content in the hydrogel is high enough to achieve considerable magnetic response to external magnetic field. As a result, the P(NTBA‐co‐AAm) ferrogel may be useful for potential applications in magnetically controlled drug release systems, magnetic‐sensitive sensors, and pseudomuscular actuators. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels with N,N‐methylene bisacrylamde (BIS) as crosslinker were prepared by free radical polymerization method at the temperature of 35°C, which was just around the lower critical solution temperature (LSCT) of the hydrogels. The gels synthesized at 35°C demonstrated strong swellability and fast responseability when compared with the gels synthesized at the temperature of 0 and 18°C (below the LCST) and 50 and 80°C (above the LSCT). The response rate and swelling behavior of poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels was investigated and characterized by the temperature‐dependent swelling ratio and swelling and deswelling kinetics. The swelling behavior of the gels indicated that the synthesis temperature was the main factor when the swellability concerned and also had effect on the responseability of the resulting hydrogels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The glass transition temperature of a series of samples of the poly[(methyl methacrylate)‐co‐(ethyl acrylate)] copolymer, synthesized at low conversion, were calculated theoretically using the equations of Barton and Johnston. The values obtained are more precise when the probabilities of the compositional diads are derived from the 13C NMR data instead of the classical method utilizing reactivity ratios. This can be observed more clearly when the copolymer samples are synthesized at high conversion. Introduction of configuration (tacticity) at the diad level confirms the above observations and slightly improves the calculated values of Tg compared to the initial formulae which were only taking into account the compositional sequences of the copolymer. © 2001 Society of Chemical Industry  相似文献   

15.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. Based on these graft copolymers, electrospun fiber mats and commonly cast films were explored as drug delivery vehicles using tetracycline hydrochloride as a model drug. Toward that end, the fibers were electrospun and the films were cast from chloroform solutions containing a small amount of methanol to solubilize the drug. The Brookfield viscosities of the solution were determined to achieve the optimal electrospinning conditions. The vitro release of the tetracycline hydrochloride from these new drug delivery systems was followed by UV–vis spectroscopy. To probe into the factors affected on the release behavior of these drug delivery systems, their water absorbing abilities in phosphate buffer solution were investigated, together with their surface hydrophilicity, porosity and crystallization properties were characterized by water contact angles, capillary flow porometer, DSC, and WAXD, respectively. The morphological changes of these drug delivery vehicles before and after release were also observed with SEM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Summary: Temperature‐sensitive P(DEAEMA‐co‐DMAAm) cryogels with five different DMAAm contents were synthesized via a two‐step polymerization method, the initial polymerization being conducted for various times at 22 °C, followed by polymerization at ?26 °C for 24 h. The influence of the first‐step time and the content of DMAAm on the swelling ratio and network parameters such as the polymer/solvent interaction parameter, the average molecular mass between crosslinks, and the mesh size of the cryogels were reported and discussed. The swelling studies indicated that the swelling increased in the following order: 22C45 > 22C30 > 22C15 > 22C0. The cryogels exhibited swelling/deswelling transitions (reentrant phenomena) in water depending on temperature. These properties were attributed to the macroporous and regularly arranged network of the cryogels. Scanning electron microscope graphs reveal that the macroporous network structure of the cryogels can be adjusted by applying a two‐step polymerization.

Chemical structure of the P(DEAEMA‐co‐DMAAm) cryogels.  相似文献   


17.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Poly(vinyl alcohol) (PVA) grafted with poly(lactide‐co‐glycolide) and cross‐linked as a material of increased hydrophobicity relative to PVA was produced. The properties were examined with respect to the mass loss, water uptake, hydrophilicity, and mechanical characteristics upon hydrolytical degradation. The hydrogels investigated display water uptake increasing with degradation time because of increasing hydrophilicity. The mass loss amounts up to 15% after eight weeks of degradation. The mechanical properties of the hydrogels are within the range of those of natural tissue, the E modulus is 18 MPa, or even 100–200 MPa, depending on the structure of material. The mechanical characteristic and their dependence degradation show the most recognizable correlation with the chemical structure. Studies of the topography of degraded samples (scanning electron microscopy) and IR measurements demonstrate the degradation to occur at slow rate due to the high degree of grafting. The mass loss is rather low and a bulk degradation mechanism takes place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Nanocomposite latex with nano‐silica of varying particle sizes was prepared via in situ polymerization and investigated by submicron particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier‐transform infrared spectrometry (FTIR) and Raman spectrometry. It was found that nanocomposite latex exhibited a core–shell structure with nano‐silica particles enwrapped, resulting in an increase in the latex particle size. The smaller the nano‐silica particles, the more were embedded in each latex particle. The increase in the particle size of latex depended not only on the particle size of nano‐silica, but also on the number of nano‐silica particles in each latex particle. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
In this study, N‐vinylpyrrolidone(VP)/methacrylic acid (MAA) mixtures have been prepared at three different mole percents which the methacrylic acid composition around 5, 10, and 15%. Poly(N‐vinylpyrrolidone‐co‐methacrylicacid) P(VP/MAA) hydrogels irradiated at 3.4 kGy have been used for swelling and diffusion studies in water and uranyl ion solutions. The influence of dose, pH, relative amounts of monomers in MAA/VP monomer mixtures on the swelling properties have been investigated. P(VP/MAA) hydrogels were swollen in distilled water at pH 7.0. P(VP/MAA)1 hydrogel containing 36% (mole percent) methacrylic acid showed the maximum percent swelling in water. Adsorption isotherms were constructed for uranyl ions and P(VP/MAA) hydrogel systems. It has been found that P(VP/MAA) hydrogels have very high uptake of the uranyl ions succesfully in water containing uranyl ions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号