首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
提出基于相变材料(PCM)的分户式低谷电蓄热供暖系统,通过数值模拟及实验研究对其蓄放热特性和供暖性能做出全面评价。采用Fluent对相变蓄热供暖系统的蓄放热过程进行了数值模拟,分析了不同入口风速、不同入口风温和不同种类蓄热材料等因素对蓄热供暖系统放热性能的影响,通过实验研究验证了模拟工况的正确性。结果表明,入口风速对系统放热性能的影响较大,随着入口风速的提高,系统平均出风温度降低,瞬时供暖负荷增大;入口风温对系统放热性能的影响微弱;复合相变材料(CPCM)由于具有更高的热导率,比纯十二水硫酸铝铵更加适合作为相变蓄热供暖系统的蓄热介质。本文设计和研究的分户式低谷电相变蓄热供暖系统具有良好的蓄放热能力,可为相变蓄热在低谷电利用场景作出有益参考。  相似文献   

2.
相变储能是一种基于材料相变过程吸/放热而实现能量储存的技术,已广泛应用在工业企业能量回收领域。本文针对目前相变材料储/释能过程中热导率低引起能量传递慢的问题,从优化储能结构和添加导热填料两方面综述了相变材料储能过程强化传热技术。优化储能结构方面,分析了开式结构和闭式结构对相变传热过程的影响;添加导热填料方面,讨论了金属翅片、导热粒子、导热纤维和多孔金属对相变材料储能传热过程的影响。分析认为,管壳结构的热损失小,传热效果好;多孔金属作为导热填料增强导热效果更好,并提出复合强化传热会成为今后相变储能领域研究的重点。  相似文献   

3.
刘金才 《辽宁化工》2005,34(7):304-306
储存热能的蓄热装置应具有体积小,蓄热量大、便于加热、放热和控制等特点。潜热蓄热材料与显热蓄热材料相比,蓄热密度要高的多,能够通过相变在恒温下放出大量的的热能.根据这一特性,研制开发了一种用电加热的相变蓄热装置,装置中加装了强化传热的导热翅片和放热的换热盘管。在不同循环水流量下对采暖过程中的热工参数进出做了测量。通过对测试结果的分析,得到了放热时散热片进出水水温随时间的变化曲线。其装置内部传热性能较好,内部加装翅片起到了很好的强化传热作用。并且,此设备具有体积小,蓄热量大、便于控制等特点,导热翅片起到了很好的强化传热作用。  相似文献   

4.
孟锋  安青松  郭孝峰  赵军  邓帅  赵栋 《化工进展》2016,35(5):1273-1282
蓄热技术可以有效克服供能端与用户端在时间和空间上的不匹配问题,是提高能源利用率的重要手段之一,但是当前的蓄热技术存在蓄、放热速率较低等问题。鉴于此,本文综述了过程强化技术在蓄热中的应用。首先介绍了各类蓄热技术,包括显热蓄热、潜热蓄热以及热化学蓄热,并且从蓄热密度、蓄放热速率以及技术可行性上对各类蓄热技术的优缺点进行了比较;其后,重点回顾了代表性过程强化技术在蓄热系统中的应用,包括结构优化、材料改性以及梯级蓄热;通过分析可以看出,过程强化技术可以对蓄热过程中的传热传质进行强化,极大地提高蓄热系统的蓄放热效率。最后,本文就蓄热技术发展趋势进行了展望,蓄热系统将朝着紧凑、高效的方向发展;在未来的发展中,蓄热技术与能源互联网的结合是应用研究的重点之一。  相似文献   

5.
沈永亮  张朋威  刘淑丽 《化工学报》1951,73(10):4366-4376
针对于相变材料(PCM)导热性能差引起的梯级相变储热系统传热速率低的问题,利用三维数值仿真研究肋片和多孔介质对梯级相变储能系统放热性能的强化作用,在此基础上提出了梯度孔隙率进一步提升系统的放热性能,从PCM的放热速率和放热效率两个方面对梯级相变储能系统的不同强化方法进行了分析对比。结果表明肋片在显热放热阶段强化传热作用更显著,而多孔介质在潜热放热阶段强化传热更显著。整个放热过程只加入多孔介质比只加入肋片表现出更好的放热性能。同时添加肋片和多孔介质时,梯级相变系统放热性能最优,PCM完全凝固时间减少了40%。三种孔隙率梯度工况下,系统的放热效率无明显差异,但在负梯度孔隙率情况下,放热速率更高且更均匀。相比于正梯度孔隙率的情况,负梯度孔隙率具有更优的热性能。  相似文献   

6.
沈永亮  张朋威  刘淑丽 《化工学报》2022,73(10):4366-4376
针对于相变材料(PCM)导热性能差引起的梯级相变储热系统传热速率低的问题,利用三维数值仿真研究肋片和多孔介质对梯级相变储能系统放热性能的强化作用,在此基础上提出了梯度孔隙率进一步提升系统的放热性能,从PCM的放热速率和放热效率两个方面对梯级相变储能系统的不同强化方法进行了分析对比。结果表明肋片在显热放热阶段强化传热作用更显著,而多孔介质在潜热放热阶段强化传热更显著。整个放热过程只加入多孔介质比只加入肋片表现出更好的放热性能。同时添加肋片和多孔介质时,梯级相变系统放热性能最优,PCM完全凝固时间减少了40%。三种孔隙率梯度工况下,系统的放热效率无明显差异,但在负梯度孔隙率情况下,放热速率更高且更均匀。相比于正梯度孔隙率的情况,负梯度孔隙率具有更优的热性能。  相似文献   

7.
首次将无机相变材料乙酸钠和混合有机相变材料(硬脂酸和十八醇)复合,获得三元复合相变材料。有机和无机相变材料复合可有效解决无机相变材料在相变过程中存在相分离、过冷度大和有机相变材料热导率低的缺点。利用同心套管蓄/放热实验台测试了乙酸钠/硬脂酸/十八醇三元复合相变材料的蓄/放热性能,分析了流体流量及温度对相变材料蓄/放热过程的影响,并结合Fluent数值模拟和实验结果分析了相变过程中相界面的移动规律。研究结果表明,三元复合相变材料在蓄热过程中自然对流起主导作用,放热过程中导热起主导作用,蓄热所需时间小于放热所需时间。蓄热过程中,相变材料的上部相界面横向移动明显快于下部;放热过程中,相变材料的上、下部相界面均匀地径向移动。  相似文献   

8.
相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点,指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。  相似文献   

9.
组合相变材料强化固液相变传热可视化实验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高清相机和红外热像技术,对组合相变材料融化-凝固循环过程与传热特性开展了可视化实验研究。以填充三种石蜡的相变蓄热腔体为研究对象,追踪了腔体内固液相界面的动态演化过程和温度分布的变化规律。在此基础上,考察了相变材料布置顺序对蓄热腔体热性能的影响,分析了组合相变材料蓄热腔体的相变行为及强化传热特性。结果表明,相变温度较高的相变材料应靠近加热壁面布置;组合相变材料蓄热腔体存在多个固液相界面现象,不同相变材料可同时融化/凝固;与单一相变材料相比,组合相变材料的应用改善了蓄热腔体各单元相变速率的均匀性,提高了平均相变速率;组合相变材料虽然降低了蓄热腔体的显热蓄热量,但减小了温度变化速率,增强了系统的稳定性,并显著增加了潜热蓄热量,有效提高了相变蓄热腔体的总蓄热量。  相似文献   

10.
相变蓄热技术是节能减排的一个重要手段,在太阳能利用、余热回收和电力削峰填谷等领域发挥重要的作用。设计了以平板微热管阵列-泡沫铜复合结构为基础,多孔扁管为载热流体通路,水为载热介质,石蜡为相变材料的热管式蓄热装置。通过实验研究了蓄放热过程中装置内部石蜡的温度分布情况,不同载热流体温度和流量下的蓄放热功率变化,以及装置蓄放热效率等特性。实验结果表明,平板微热管阵列-泡沫铜复合结构可以使箱体内石蜡温度分布更加均匀;增加载热流体和相变材料的温差以及增大流量都可以提高蓄放热功率。实验条件下,该装置的最大蓄热功率为1.24 kW,最大放热功率为1.43 kW。装置蓄热效率为92%,放热效率为94%,总效率为87.4%。  相似文献   

11.
相变储热的传热强化技术研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
相变储热技术具有储热密度大、相变温度稳定以及过程容易控制等优点,具有广泛应用前景。相变储热技术在应用中需完成热能的储存与释放过程,其传热特性直接决定应用效果。储热技术的传热强化主要包括三个方面:一是相变材料本身的导热强化;二是潜热型功能热流体的对流传热强化;三是储热器的传热强化。本文综述了国内外在相变储热技术的传热强化研究方面的进展,主要介绍了膨胀石墨、泡沫金属等复合相变材料的导热强化,相变微胶囊及相变微、纳米乳液潜热型功能热流体传热强化以及管壳式储热器、板式储热器、螺旋盘管储热器等储热器的传热强化。文章指出,膨胀石墨基复合相变材料具有高热导率、大储热密度以及良好的定型特性,且价格低廉,极具应用前景。纳米乳液功能热流体具有表观比热容大、流阻较小等优势,但存在稳定性较差、过冷度大等问题。板式储热器具有较大的传热面积、较高的传热功率,适宜应用于相变材料传热系统。但应用背景不同,针对不同场景提供不同储热器的选型及指导值得作进一步的研究。  相似文献   

12.
王震  闫霆  霍英杰 《化工进展》2022,41(8):4425-4431
热化学吸附储热具有储热损失小、储热密度高、可实现冷热复合储存等优点,近年来得到了广泛的关注。本文以MnCl2/NH3作为吸附储热工质对,基于热化学吸附技术构建了热化学吸附储热实验平台,对MnCl2/NH3热化学吸附系统的储热性能进行了理论分析和实验研究。结果表明:在解吸充热温度、吸附放热温度、冷凝/蒸发温度分别为162℃、45℃和25℃的运行条件下,试验获得的吸附储热密度最大,其值为1296.36kJ/kg MnCl2或1101.90kJ/kg固化复合吸附剂。当放热温度从45℃增大到85℃时,热化学吸附储热系统的吸附储热效率从38.98%降低至24.08%。由于传热传质、化学反应动力学等因素的影响,相同运行工况下吸附储热系统实际所获得的储热性能要低于理论值。  相似文献   

13.
脂肪酸类相变材料传热及液相渗漏的研究进展   总被引:2,自引:0,他引:2  
黄雪  崔英德  张步宁  冯光炷  尹国强 《化工进展》2014,33(10):2676-2680
能源的大量消耗使得储热技术研究越来越重要,相变材料作为一种有效的潜热储热材料在潜热储热系统中占据重要地位。脂肪酸相变材料因其来源广泛,具有共熔和共结晶特点、相变焓高和清洁可再生等优点受到广泛关注,但脂肪酸相变材料也存在热导率低和固-液相转变时液相渗漏等缺点。本文对国内外脂肪酸相变材料的传热和渗漏进行了综述与讨论,就热导率低的缺点提出了强化传热的方式,通过建立传热模型研究其导热行为并预测传热系数;就渗漏问题提出4种有效解决液相渗漏的方法,分析了各种方法的优缺点。对节能环保要求越来越高的今天,解决脂肪酸相变材料的传热和渗漏已成为热点问题。最后对脂肪酸相变材料的发展前景进行展望。  相似文献   

14.
相变潜热储能系统具有储热密度高、工作温度稳定和工艺流程简单等优点。相变材料可以通过多种方式与建筑物相结合,利用自身吸热/放热的特性对热能进行储存和释放,从而提高可再生能源的利用率。研究表明,相变储热单元能够有效地降低室内的温度波动,提高室内环境的热舒适性,减少建筑能耗。本文基于相变储热技术在建筑围护结构中的墙体、屋顶、地板以及窗户的研究现状,对近年来被动式储热建筑节能的研究现状进行了综述。阐述了适用于建筑物的相变材料的特点、优化相变材料热性能的方法、相变储热技术调控室内热环境的原理以及相变材料应用于建筑物的节能效果。文章指出,未来的研究应注重高性能相变材料的开发、复合工艺的简化以及室内热环境的综合评价。  相似文献   

15.
顾清之  赵长颖 《化工学报》2012,63(12):3776-3783
蓄热系统是解决热量供需不匹配的有效方式之一。根据热量储存原理的不同,可以将系统分为显热、潜热和热化学蓄热三种类型,其中热化学蓄热有其独特的优点。基于镁-氢化镁热化学蓄热系统蓄放热时的物理化学过程,建立了系统的二维非稳态数学模型,考虑了不同边界条件对系统的影响,通过数值计算,获得了系统的温度、反应速率、反应进度分布及系统的对外放热功率。研究结果表明:系统的蓄热密度为0.85 kW·h·(kg Mg)-1,热量的传递是影响系统蓄放热效率的关键因素之一,并且当边界对流传热系数保持一定时,存在一个最佳的外界流体温度,使系统的平均放热功率达到最大。在系统以定壁温为边界条件时,系统最大的平均放热功率/质量值为0.79 kW·(kg Mg)-1。  相似文献   

16.
脉动热管相变蓄热器蓄热实验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
罗孝学  章学来  华维三  毛发 《化工学报》2017,68(7):2722-2729
为了研究脉动热管对相变蓄热装置传热能力的优化,设计并搭建了脉动热管相变蓄热装置试验台,实验验证相变潜热蓄热量远大于显热蓄热量;在相同工况下改变加热流体流量,流量增大对传热优化有一定作用,但流量不宜过大;调整热源温度,温度越高,相变蓄热过程所需要的时间就越少;与常规铜管进行蓄热实验对比,脉动热管相变蓄热装置在蓄热过程中节省了47%的蓄热时间,同时优化了相变蓄热装置的传热均匀性。实验证明利用脉动热管技术对相变蓄热系统进行传热优化是可行的。  相似文献   

17.
管壳式换热器作为工程中应用广泛的换热器,具有结构坚固、适应性强、能够利用和回收热能等优点。在追求高能源利用效率的背景下,换热器的强化传热得到广泛关注。本文重点阐述了管壳式换热器的强化传热相关研究进展,包括换热器本身几何结构的优化、换热流体的热物性改善以及多种强化传热技术结合的复合强化传热方法。其中几何结构优化主要包括改变换热管管型、增加管内插入物以及壳程中的隔板优化研究等。换热流体热物性改善包括纳米流体提高热导率、潜热型热流体提高比热容等。复合强化传热是将多种强化方法结合,可弥补单一方法的不足,以获得更高强化传热效果。最后指出管壳式换热器强化传热未来的研究方向在于持续开发强化传热管、制备稳定的纳米流体及潜热型流体以及多种强化方式复合提高强化效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号