共查询到20条相似文献,搜索用时 15 毫秒
1.
Xuepei Yuan Chuncheng Li Guohu Guan Xiaoqing Liu Yaonan Xiao Dong Zhang 《应用聚合物科学杂志》2007,103(2):1279-1286
A kind of clay with fibrous morphology, attapulgite (AT), was used to prepare poly (ethylene terephthalate) (PET)/AT nanocomposites via in situ polymerization. Attapulgite was modified with Hexadecyltriphenylphosphonium bromide and silane coupling agent (3‐glycidoxypropltrimethoxysilane) to increase the dispersion of clay particles in polymer matrix and the interaction between clay particles and polymer matrix. FTIR and TGA test of the organic‐AT particles investigated the thermal stability and the loading quantity of organic reagents. XRD patterns and SEM micrographs showed that the organic modification was processed on the surface of rod‐like crystals and did not shift the crystal structure of silicate. For PET/AT nanocomposites, it was revealed in TEM that the fibrous clay can be well dispersed in polymer matrix with the rod‐like crystals in the range of nanometer scale. The diameter of rod‐like crystal is about 20 nm and the length is near to 500 nm. The addition of the clay particles can enhance the thermal stability and crystallization rate of PET. With the addition of AT in PET matrix, the flexural modulus of those composites was also increased markedly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1279–1286, 2007 相似文献
2.
Antimony doped tin oxide (ATO) nanoparticles modified poly(ethylene terephthalate) (PET) composites used for manufacturing antistatic PET fiber were synthesized by in situ polymerization. The crystallization and multiple melting behavior of the nanocomposites were systemically investigated by means of Differential Scanning Calorimeter (DSC), Fourier Transform Infrared (FTIR), X‐ray Diffraction (XRD) techniques. The degree of crystallinity in nanocomposites increased with increasing ATO content. Smaller and more incomplete crystals are presented in the crystalline regions of the nanocomposites with increasing the content of ATO, which could be attributed to heterogeneous nucleation effects of ATO nanoparticles. Dynamic Mechanical Analysis (DMA) measurements showed that the storage moduli of the nanocomposites increased with increasing the content of ATO, due to formation of immobilized layer between polymer and filler. The interactions between ATO and PET molecules result in high tan δ for the PET/ATO nanocomposites. Percolation threshold of PET/ATO hybrid fibers prepared by the nanocomposites at room temperature was as low as 1.05 wt %, much lower than that of the composites filled with conventional conductive particles. Adding ATO nanoparticles obviously improves the conductivity of PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
3.
Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) with different MWCNTs loadings have been prepared by in situ polymerization of ethylene glycol (EG) containing dispersed MWCNTs and terephthalic acid (TPA). From scanning electronic microscopy images of nanocomposites, it can be clearly seen that the PET/MWCNTs composites with low‐MWCNTs contents (0.2 and 0.4 wt %) get better MWCNTs dispersion than analogous with high‐tube loadings (0.6 and 0.8 wt %). The nonisothermal crystallization kinetics was analyzed by differential scanning calorimetry using Mo kinetics equation, and the results showed that the incorporation of MWCNTs accelerates the crystallization process obviously. Mechanical testing shows that, in comparison with neat PET, the Young's modulus and the yield strength of the PET nanocomposites with incorporating 0.4 wt % MWCNTs are effectively improved by about 25% and 15%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
Recycled poly(ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties 总被引:1,自引:0,他引:1
Various amounts (1, 3 and 5 wt%) of a non-modified natural montmorillonite clay (Cloisite® Na+) or of an ion-exchanged clay modified with quaternary ammonium salt (Cloisite® 25A) were dispersed in a recycled poly(ethylene terephthalate) matrix (rPET) by a melt intercalation process. Microphotographs of composite fracture surfaces bring evidence that particles of Cloisite® 25A are much better dispersed in the rPET matrix than those of Cloisite® Na+. Moreover, WAXS measurements indicate that the lamellar periodicity of Cloisite® 25A is increased in the composites, which evidences intercalation of rPET between silicate layers (lamellae) of the clay. In the case of Cloisite® Na+, a very small thickening of lamellae due to mixing with rPET indicates only minute intercalation.Uniaxial tensile tests show that both clays increase the modulus of the rPET composites; more effective Cloisite® 25A accounts for a 30% increase at loading of 5 wt%. Yield strength remains practically unaffected by the used fractions of the clays while tensile strength slightly decreases with the clay content; in parallel, strain at break dramatically drops. Tensile compliance of the composites is virtually independent of applied stress up to 26 MPa. Essential part of the compliance corresponds to the elastic time-independent component, while the viscoelastic component is low corresponding only to a few percent of the compliance even at relatively high stresses. The compliance of the composites is only slightly lower than that of the neat rPET, the reinforcing effect of Cloisite® 25A being somewhat stronger. Both clays have beneficial effect on the dimensional stability of the composites since—in contrast to the neat rPET—the creep rate does not rise at long creep periods. 相似文献
5.
Supercritical carbon dioxide (scCO2) dispersion of poly(ethylene terephthalate)/clay nanocomposites: Structural,mechanical, thermal,and barrier properties 下载免费PDF全文
Dispersed poly(ethylene terephthalate) (PET)/clay nanocomposites can lead to materials with superior barrier and mechanical properties. PET/clay nanocomposites were prepared by melting extrusion of PET with as‐received or supercritical carbon dioxide (scCO2) predispersed Cloisite® 30B (30B). The predispersion of 30B was assessed by WAXD, SEM, and TGA, and results indicated that scCO2 processing could predisperse 30B and the surface modification of the clay was preserved after processing. The structure of PET/30B nanocomposites was investigated by WAXD and TEM confirming that PET has penetrated into the clays inter‐galleries and the predispersed clays lead to improved interfacial interaction and homogenous clay dispersion. Both tensile strength and Young's modulus were improved by 12.1% and 24.9% respectively, as incorporating of 3 wt % of scCO2 processed clay. Differential scanning calorimetry (DSC) results indicated that clay particles served as nucleation agent could increase the crystallinity whereas had no impact on melting process. In addition, with the addition of 1 wt % of predispersed clay, a significant reduction of oxygen permeation (~33%) was achieved at 23 °C and the maximum reduction (44%) was achieved by adding 3 wt % processed clay. Moreover, we confirmed the effect of temperature on the permeation of PET/30B nanocomposites depended both on the Arrhenius behavior of the organic phases and tortuous path effects, where improved clay dispersion resulted in a higher effective activation energy. Moreover, the transparency of PET matrix was preserved for all nanocomposites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44779. 相似文献
6.
Poly(ethylene terephthalate) (PET)/clay nanocomposites (PCNs) with N‐methyl diethanol amine (MDEA)‐based organoclays are synthesized by using in situ polymerization. Four kinds of MDEA‐based materials are prepared and used as organifiers of pristine montmorillonite. The clay treated with the organifiers has a d‐spacing range that is about 14–21 Å. The PCNs with these organoclays are characterized by using wide‐angle X‐ray diffraction, scanning and transmission electron microscopy, atomic force microscopy, capillary rheometry, and tensile and barrier testing. The PCNs form an intercalated and delaminated structure. The well‐stacked nanoclays are broken down into small pieces in the PET matrix and the thickness of the clay bundle decreases to 20 nm. The melt viscosity and tensile strength of these PCNs increases with only 0.5 wt % clay. In oxygen barrier testing, the PCN with 1 wt % well‐dispersed organoclay shows a twofold higher barrier property than pure PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1262–1271, 2007 相似文献
7.
By in situ polycondensation, a intercalated poly(ethylene terephthalate)/organomontmorillonite nanocomposite was prepared after montmorillonite (MMT) had been treated with a water‐soluble polymer. This nanocomposite was produced to fibers through melt spinning. The resulting nanocomposite fibers were characterized by X‐ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM). The interlayer distance of MMT dispersed in the nanocomposite fibers was further enlarged because of strong shear stress during processing of melt spinning. This was confirmed by XRD test and TEM images. DSC test results showed that incorporation of MMT accelerated the crystallization of poly(ethylene terephthalate) (PET), but the crystallinity of the drawn fibers just had a little increasing compared with that of neat PET drawn fibers. Also compared with pure PET drawn fibers, tensile strength at 5% elongation and thermal stability of the nanocomposite fibers were improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1443–1447, 2005 相似文献
8.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005 相似文献
9.
The nonisothermal and isothermal degradation processes of poly(ethylene terephthalate)/mesoporous molecular sieve (PET/MMS)
composites synthesized by insitu polymerization were studied by using thermogravimetric analysis in nitrogen. The nonisothermal
degradation of the composite is found to be the first-order reaction. An isoconversional procedure developed by Ozawa is used
to calculate the apparent activation energy (E), which is an average value of about 260 kJ/mol with the weight conversion from 0% to 30%, and is higher than that of neat
PET. Isothermal degradation results are confirmed with the nonisothermal process, in which PET/MMS showed higher thermal stability
than neat PET. The polymer in mesoporous channels has more stability due to the protection of the inorganic pore-wall. These
results indicate that mesoporous MMS in PET/MMS composites improve the stability of the polymer.
Translated from Polymer Materials Science and Engineering, 2006, 22(1): 64–67 [译自: 高分子材料与工程] 相似文献
10.
A. L. F. de M. Giraldi M. T. M. Bizarria A. A. Silva J. I. Velasco Marcos A. d'Ávila L. H. I. Mei 《应用聚合物科学杂志》2008,108(4):2252-2259
The effects of extrusion conditions on the mechanical properties of recycled poly(ethylene terephthalate) (rPET)/clay nanocomposites were studied. Nanocomposites of recycled PET containing 2.5 and 5.0 wt % of montmorillonite modified with organophilic quaternary ammonium salt (DELLITE 67G) were prepared by melt compounding using a corotating twin‐screw type extruder at two different screw rotation speeds: 250 and 150 rpm. The highest value of Young's modulus was found for low screw rotation speed (150 rpm). Morphological analysis using transmission electron microscopy (TEM) revealed the presence of fully exfoliated clay platelets in samples prepared at 150 rpm. It was concluded that the screw rotation speed should be optimized when preparing recycled PET/clay nanocomposites by melt compounding. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
11.
Poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were prepared by in situ polymerization. The dispersion and crystallization behaviors of PET/SiO2 nanocomposites were characterized by means of transmission electron microscope (TEM), differential scanning calorimeter (DSC), and polarizing light microscope (PLM). TEM measurements show that SiO2 nanoparticles were well dispersed in the PET matrix at a size of 10–20 nm. The results of DSC and PLM, such as melt‐crystalline temperature, half‐time of crystallization and crystallization kinetic constant, suggest that SiO2 nanoparticles exhibited strong nucleating effects. It was found that SiO2 nanoparticles could effectively promote the nucleation and crystallization of PET, which may be due to reducing the specific surface free energy for nuclei formation during crystallization and consequently increase the crystallization rate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 655–662, 2006 相似文献
12.
PEN/PET共混物结晶行为研究 总被引:1,自引:0,他引:1
用差示扫描量热法(DSC)研究了不同共混比例PEN/PET共混物的熔体结晶行为,并进行了等温结晶动力学测定。结果表明:随着两种组分向中间比例(50/50)靠近,共混物的熔融温度越低,结晶速率也越慢。 相似文献
13.
By in situ polycondensation, poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposites was prepared, which were characterized via X‐ray diffraction and transmission electron microscope. The processing stability of these nanocomposites was investigated by the change of number–average molecular weight and carboxyl terminal group content during injection molding, and the thermal stability of the nanocomposites was investigated via thermogravimetric analysis. It was found that some metallic derivatives released from MMT during polycondensation had a great influence on the processing and thermal stabilities of the nanocomposites. The quantity of these metallic derivatives was determined by inductively coupled plasma. The stabilization effect of phosphorous compounds generated from MMT modified with phosphonium was observed. Processing stability and thermal stability of these nanocomposites exhibited similar trend because of almost the same causes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1692–1699, 2006 相似文献
14.
In this study, poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were synthesized by in situ polymerization and melt‐spun to fibers. The superfine structure and properties of PET/SiO2 fibers were studied in detail by means of TEM, DSC, SEM, and a universal tensile machine. According to the TEM, SiO2 nanoparticles were well dispersed in the PET matrix at a size level of 10–20 nm. The DSC results indicated that the SiO2 nanoparticles might act as a marked nucleating agent promoting the crystallization of the PET matrix from melt but which inhibited the crystallization from the glassy state, owing to the “crosslink” interaction between the PET and SiO2 nanoparticles. The tensile strength of 5.73 MPa was obtained for the fiber from PET/0.1 wt % SiO2, which was 17% higher than that of the pure PET. The fibers were treated with aqueous NaOH. SEM photographs showed that more and deeper pits were introduced onto PET fibers, which provided shortcuts for disperse dye and diffused the reflection to a great extent. According to the K/S values, the color strength of the dyeing increased with increasing SiO2 content. It is found that the deep dyeability of PET fibers was improved greatly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
15.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation. 相似文献
16.
Poly(trimethylene terephthalate) (PTT)/polypropylene (PP) blend nanocomposites were prepared by melt mixing of PTT, PP, and organically modified clay. The phase morphologies of the PTT/PP nanocomposites and the distribution of the clay in the nanocomposites were investigated using scanning electron microscopy, transmission electron microscopy (TEM), and wide angle X‐ray diffraction. When PP is the dispersed phase, the domain size of the PP phase is decreased significantly with increasing the clay content from 0 to 5 wt %. In contrast, when PTT is the dispersed phase, the dimension of the PTT phase is a little larger in the presence of 2 wt % clay compared with the case of without clay. TEM observations indicate that the clay is mainly distributed at the phase interfaces along the phase borderlines. In addition, some intercalated clay tactoids (multilayer particles) are observed in the PTT matrix whereas no discernable clay particles can be found in the PP phase, indicating that the affinity of clay with PTT is higher than with PP. In the presence of 5 wt % PP‐graft‐maleic anhydride, the phase morphology is much finer, and most clay is exfoliated and distributed at the phase interfaces forming phase borderlines in polygonal shape. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
17.
Darwin P. R. Kint Antxon Martínez de Ilarduya A. Sansalvad Josep Ferrer Sebastin Muoz‐Guerra 《应用聚合物科学杂志》2003,90(11):3076-3086
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003 相似文献
18.
The effects of interchange reactions on the solid‐state structure and mechanical properties of a 70/30 poly(ethylene terephthalate) (PET)/bisphenol A polycarbonate (PC) blend were studied. Increasing reaction levels were obtained by means of lower screw speeds in the extruder. The progressive production of copolymers with the reaction time increased the amount of each component in the other phase. The concomitant degradation of PET led to a maximum in ductility and tensile and impact strengths whereas the modulus of elasticity and the yield stress were held constant. The maximum in properties took place at a reaction time close to 2.6 min; at longer reaction times the negative effect of degradation began to overcome the positive effect of the interchange reactions. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 121–127, 2001 相似文献
19.
采用溶胶-凝胶(sol-gel)法,将正硅酸乙酯和水加入到制备聚对苯二甲酸乙二酯(PET)的中间产物对苯二甲酸双羟乙酯(BHET)中,在液态下均匀混合,高温下快速发生溶胶-凝胶反应,再按PET缩聚反应制得PET/SiO2纳米复合材料。通过TEM、TG、DSC对材料进行了表征和研究。结果表明,SiO2在PET中均匀分散,其尺寸在10~100 nm之间,PET/SiO2纳米复合材料的热降解活化能较普通PET有明显提高,但初始降解温度和结晶性能均有所降低。 相似文献
20.
Gabriel M. Pinto Giovanna da C. Silva Chiara Santillo Marino Lavorgna João M. Maia Guilhermino J. M. Fechine 《Polymer Engineering and Science》2020,60(11):2841-2851
This work aims to produce poly(ethylene terephthalate)/multilayer graphene oxide (mGO) nanocomposites via continuous melt mixing in twin-screw extrusion, and to study the changes in crystallization and melt flow behavior. Three mGO contents (0.05, 0.1, and 0.3 wt%) were used. Differential scanning calorimetry analyses showed that at 0.1 wt%, mGO acted best as nucleating agent, increasing the crystallization kinetics as well as the melt crystallization temperature (Tmc) by more than 20%. It was also observed that mGO increases the crystals perfection. The nucleating behavior was confirmed by X-ray diffraction and small angle X-ray scattering analyses, which showed a decrease in the composites' crystalline lamella thickness (lc) and long period. X-ray microtomography data confirms that this behavior is significantly affected by the mGO agglomerates distribution and specific surface area inside the polymer matrix. The rheological behavior was studied under two different conditions. It was noticed that under lower shear stresses the mGO particles hinder the polymer flow, increasing the composites viscosity and the pseudo-solid character. However, under higher shear stresses, for example, when flowing through a die, the nanomaterial enters its “superlubricity state,” acting as a lubricant to the flow. This is industrially interesting, because it may allow the use of less severe processing parameters to produce the nanocomposites. 相似文献