首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
The recycling of carbon fibers from carbon/epoxy composites was attempted with a solvent method in nitric acid solutions. Gel permeation chromatography and gas chromatography/mass spectrometry showed that the epoxy resin could entirely decompose into low‐molecular‐weight compounds, and the main components of the dissoluble decomposed compounds were 2,4‐dinitrophenol and 2‐nitro‐4‐carboxylphenol. Electron probe microscopy showed no damage to the recycled carbon fibers. The single‐fiber tension strength loss of the recycled carbon fibers was 1.1% under the following conditions: a decomposition temperature of 90 °C, a nitric acid solution concentration of 8M, and a ratio of the sample weight to the nitric acid solution volume of 6 g:100 mL. Through orthogonal experimentation, the recycling conditions for the carbon/epoxy composites were examined. The best combination was a decomposition temperature of 90°C, a nitric acid solution concentration of 8M, and a ratio of the sample weight to the nitric acid solution volume of 4g:100 mL. This method could liquefy raw materials for rocket engine shells reinforced with carbon fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1912–1916, 2004  相似文献   

2.
This study describes preparation of poly (acrylic acid)‐grafted cotton fibers and release of antibiotic drug gentamicin sulfate from them under physiological conditions. Poly(acrylic acid) has been grafted onto cellulose backbone of cotton fibers via Ce(IV)‐initiated polymerization in aqueous medium. The conditions obtained for optimum grafting were as follows: initiation time 30 min; initiation temperature 37°C; monomer concentration 27.8 mM; grafting temperature 30°C; nitric acid (catalyst) concentration 0.1M. The grafted fibers were characterized by FTIR, TGA, and SEM analysis. The antibiotic drug gentamicin sulfate (GS) was loaded into the grafted fibers by equilibration method and release was studied under physiological conditions. The kinetic release data was interpreted by first‐order kinetic model. Finally, drug‐loaded fibers showed fair antibacterial action against Escherichia coli. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The graft copolymerization of acrylic acid (AA) and 2‐acrylamido 2‐methylpropane sulfonic acid (AASO3H) onto cellulose, in the presence or absence of crosslinking agent N,N′‐methylene bisacrylamide (NMBA), by using different concentrations of ceric ammonium nitrate (CAN) initiator in aqueous nitric acid solution at either 5 or 30°C was investigated. To investigate the effect of pretreatment of cellulose on the copolymerization, before some grafting reactions cellulose was pretreated with either 2 or 20 wt % NaOH solutions or heated in distilled water/aqueous nitric acid (2.5 × 10?3 M) at 55°C. To determine how the excess of initiator affects the grafting and homopolymerization, separate reactions were carried out by removing the excess of ceric ions by filtration of the mixture of initiator solution and cellulose before the monomer addition. Extraction‐purified products were characterized by grafting percentage and equilibrium swelling capacity. Pretreatment of cellulose with NaOH solutions decreased the grafting percentage of copolymers. In the case of AA–AASO3H mixtures, nonpretreated cellulose gave a higher grafting percentage than NaOH‐pretreated cellulose. Filtration also lowered the grafting of AA on the cellulose in the cases of pretreatment with either water or nitric acid. Copolymers with the highest grafting percentage (64.8%) and equilibrium swelling value (105 g H2O/g copolymer) were obtained in grafting reactions carried out in the presence of NMBA at 5°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2267–2272, 2001  相似文献   

4.
Cellulose triacetate (CTA) has successfully been synthesized from microfibrillated date seeds cellulose. The cellulosic material under study constituted 84.9% amorphous phase with a degree of polymerization of 950. Acetylation was conducted at 50 °C under optimized heterogeneous conditions by acetic anhydride as acetyl donor, acetic acid as solvent and sulfuric acid as catalyst. In this process, cellulose was acetylated without dissolving the material throughout. The acetylated cellulose chains on the surface were dissolved gradually in acetic acid, which created new accessible zones. The yield of cellulose triacetate was studied varying acetic acid, acetic anhydride and catalyst concentrations, as well as reaction times. The ratio between the intensity of the acetyl C=O stretching band at around 1740 cm?1 and the intensity of C–O stretching vibration of the cellulose backbone at 1020–1040 cm?1 was used to optimize the reaction time. The optimal reaction conditions of 8% concentration of sulfuric acid, acetic anhydride/cellulose weight ratio of 3:1, acetic acid/cellulose weight ratio of 7:1, reaction time of 3 h and reaction temperature of 50 °C have given highest yield of cellulose triacetate, of about 79%. The obtained date seeds-based cellulose triacetate was characterized thoroughly by Fourier transform infrared (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The synthesized product was identified as cellulose triacetate-I (CTA-I) characterized by a melting temperature of 217 °C and a decomposition temperature of 372 °C. These results demonstrated that date seeds can be used as potential source of microfibrillated cellulose which can be easily functionalized.  相似文献   

5.
Increasing ecological concerns have given rise to renewed interest in the use of natural materials, considering their renewability and possibility of disposal at the end of their life cycle without damage to the environment. In this study, we examined the isolation of cellulose from Esparto “Stipa tenacissima” of Eastern Morocco by two different ways; the first one using an acetic acid solution catalyzed by nitric acid. The objective is to determine the optimum amount of this catalyst needed to the extraction. The second way consists to study the cellulose extraction with change of the alkaline solution concentration in order to choose the required value. The cellulosic samples were characterized by FT‐IR spectroscopy and X‐ray diffraction, the morphology of the isolated fibers was investigated by optical microscopy. Thermal analysis (DT‐TGA) were carried out to study the thermal behavior of the cellulose isolated compared with the control sample. The degree of polymerization (DP) of the samples extracted is estimated from the intrinsic viscosity value using the Mark‐Houwink equation in two different solutions (DMAc/9%LiCl) and (6%NaOH/4%urea/90%H2O). We have demonstrated that the extraction using an acetic acid solution has been very successful by adding 2% in volume of nitric acid (HNO3). However, the extraction process using an alkaline solution (NaOH; 1M) is preferable because of the absence of acetylating reaction and the high purity and the nondegradation of the resulted fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Highly purified cellulose preparations were obtained by pretreatment of dewaxed barley straw, oil palm frond fiber, poplar wood, maize stems, wheat straw, rice straw, and rye straw with 2.0% H2O2 at 45°C and pH 11.6 for 16 h, and sequential purification with 80% acetic acid–70% nitric acid (10/1, v/v) at 120°C for 15 min. The purified cellulose obtained was relatively free of bound hemicelluloses (2.3–3.2%) and lignin (0.4–0.6%) and had a yield of 35.5% from barley straw, 39.6% from oil palm frond fiber, 40.8% from poplar wood, 36.0% from maize stems, 34.1% from wheat straw, 23.4% from rice straw, and 35.8% from rye straw. The weight‐average molecular weights of the purified cellulose ranged from 39,030 to 48,380 g/mol. The thermal stability of the purified cellulose was higher than that of the corresponding crude cellulose. In comparison, the isolated crude and purified cellulose samples were also studied by Fourier transform IR and cross‐polarization/magic‐angle spinning 13C‐NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 322–335, 2005  相似文献   

7.
In this study, the kinetics of the acid catalyzed hydrolysis of microcrystalline cellulose (Avicel PH101) to levulinic (LA) and formic (FA) acids was investigated in a batch reactor over the following range of conditions: 160–200°C, hydrochloric acid concentrations of 0.309–0.927 M (11.3–33.8 g/l), cellulose concentrations of 49.8–149 mM (8.06–24.1 g/l), and residence times of 0–50 min. The maximum LA yield of around 60% of theoretical was achieved for an initial cellulose concentration of 99.6 mM, acid concentration 0.927 M, and 180–200°C. A mathematical model and its analytical solution were developed to predict conversion of cellulose to LA and FA through glucose and hydroxymethyl‐2‐furfural based on an irreversible pseudo‐first order reaction. Rate analysis of each reaction indicated that the rate‐controlling step shifted from LA formation initially to HMF formation later. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

8.
The fractionation of the structural components of lignocellulosic biomass (cellulose, hemicelluloses, and lignin) and the separate utilization of the resulting fractions for specific purposes, according to the philosophy of biorefineries, enables the development of sustainable processes for biomass utilization. In this work, Pinus pinaster wood was subjected to aqueous processing to remove water-soluble extractives and hemicelluloses, and the resulting solid was subjected to pulping with HCl-catalyzed acetic acid solutions (Acetosolv method). The pulp was employed as a substrate for levulinic acid manufacture by reaction in acidic media under microwave irradiation. The effects of the major operational variables (temperature, reaction time, and acid concentration) on the levulinic acid yield were established by statistical modeling of experimental data. Operating under the best reaction conditions (at 191.2°C for 18.9 min in aqueous media containing 1.10% HCl), the levulinic acid yield accounted for 56.4% of the stoichiometric value.  相似文献   

9.
In this work, hemiceluloses and lignin were solubilized by successive steps of autohydrolysis and delignification, and the resulting solids were processed to obtain microcrystalline cellulose. Eucalyptus globulus wood chips were treated with hot, compressed water under selected conditions to cause the hydrolytic breakdown of heteroxylan into substituted saccharides. The xylan-depleted solids were treated with acetic acid under optimized conditions to remove lignin, leaving a solid phase with high cellulose content. This latter was subjected to Totally Chlorine Free (TCF) bleaching to yield microcrystalline cellulose. These sequence autohydrolysis-organosolv delignification-TCF bleaching enabled the selective separation of hemicelluloses (which were mainly converted into soluble saccharides), lignin (as compounds soluble into acetic acid), and microcrystalline cellulose, according to an environmentally friendly biorefinery method.  相似文献   

10.
In this study, redox‐initiated free radical graft copolymerization of microcrystalline cellulose (MCC) and methyl methacrylate (MMA) has been carried out in aqueous media to develop a novel cellulose‐based copolymer. Cerium ammonium nitrate was used as the initiator in the presence of nitric acid. Effects of monomer concentration, initiator concentration, polymerization time, and polymerization temperature on the graft parameters of copolymers were studied. The successful grafting copolymerization between MCC and MMA was validated through attenuated total reflection, wide‐angle X‐ray diffraction, field‐emission scanning electron microscopy, and thermal gravimetric analysis. In comparison to native MCC, the resultant copolymers exhibited enhanced thermal stability and better compatibility with natural rubber, suggesting its potential application as reinforcement material in rubber industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42666.  相似文献   

11.
BACKGROUND: Prehydrolysis of wheat stubble using moderate temperatures and dilute acid strength is an effective means for solubilizing hemicellulose fractions and improving cellulose hydrolysis. Variation in prehydrolysis parameters (temperature, time, and acid strength) and enzymatic saccharification conditions were examined for conversion of wheat stubble into fermentable sugars. RESULTS: Elevating temperature and acid strength maximized sugar release in prehydrolysate liquors. The optimal conditions of 2.0% H2SO4/60 min/121 °C effectively solubilized 79% of the available hemicellulose. Production of inhibitory hydrolysis and degradation products such as acetic acid and levulinic acid, were detected at levels of 3.4 g L?1 and 0.64 g L?1, respectively. Sugar yields in prehydrolysate and saccharified liquors were found to increase with treatment severity. Temperature had the greatest impact on sugar release, followed by acid concentration and time. Optimizing prehydrolysis conditions at 1.0% H2SO4/90 min/121 °C, produced a 3.2‐fold improvement in cellulose hydrolysis with recoveries approaching 82%. The addition of β‐glucosidase and xylanase to the cellulase preparations assisted monomeric sugar release. CONCLUSION: Although treatment conditions for hemicellulose and cellulose hydrolysis differ, the study's findings suggest a good degree of overlap and process flexibility which should permit high recovery of pentose and hexose sugars. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The nitric acid concentration/sulfuric acid concentration (NAC/SAC) process has been widely used for concentrating dilute aqueous nitric acid and recovering spent sulfuric acid. Dilute nitric acid (65 to 80 wt %) is concentrated using sulfuric acid to bind water and break the nitric acid‐water azeotrope at approximately 68 wt % nitric acid. To support heat and mass balance calculations and process simulation for NAC/SAC processes, we develop a comprehensive thermodynamic model for nitric acid‐sulfuric acid‐water ternary system based on previously published thermodynamic models of nitric acid‐water and sulfuric acid‐water binary systems with eNRTL equation. The ternary system model correlates well the isobaric vapor‐liquid equilibrium data at one atmosphere and the water and nitric acid activities data at 273.15 K for the ternary. Contour plots of boiling points, vapor phase composition, and specific heat capacity of the ternary system, as well as a Merkel enthalpy‐concentration chart are generated for engineering use. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3110–3117, 2017  相似文献   

13.
Flat hemodialysis membranes were prepared from cellulose/N‐methylmorpholine‐N‐oxide (NMMO) solutions (dope) with different cellulose concentrations (6–8 wt %) by using a phase‐inversion method. The coagulant used was NMMO aqueous solution, of which the NMMO concentration and its temperature were varied in the range of 0 to 50 wt % and 5 to 60°C, respectively. The effects of these preparation conditions on the permeation characteristics, the ultrafiltration rate (UFR) of pure water, and sieving coefficient (SC) of dextran, were investigated. The decrease in cellulose concentration of the dope and the increases in both temperature and NMMO concentration of the coagulant gave a membrane with high UFR. Concerning the SC, the increase of the cellulose concentration and the decreases in both temperature and NMMO concentration gave a good result. Consequently, the membrane having the preferable UFR and SC as a hemodialysis membrane was obtained when the 8 wt % cellulose dope was coagulated in water at 5°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2302–2307, 2002  相似文献   

14.
An attempt was made to clarify the effect of culture conditions of an acetic acid bacteria (Acetobacter xylinum) on cellulose biosynthesis using glucose as carbon source in complex medium. Synchronous culture conditions were first realised on cellulose biosynthesis by cooling the system to 4°C for 24 h. Under the synchronous conditions stepwise division of the cell and the stepwise production of cellulose were found. Furthermore, cellulose was proved to be produced when the cell number in the medium was constant.  相似文献   

15.
A new way of producing polycation‐grafted fibrous cellulose for its use as a retention aid in the papermaking process was conceived. It consists of adding, under intense stirring, to a cellulose fibers suspension at a basic pH a cationic polyacrylamide dissolved in water. As the cellulose fiber's surface is negatively charged because of its more or less acid groups, the cationic polymer adsorbs on it. The cationic‐grafted cellulose fibers are very similar to the cellulose fibers used in papermaking, since the polymer is (on a micrometer scale) homogeneously grafted on them as a film. It could so be used to increase the retention of the negatively charged fillers, fibers, and pigments during the process, without altering the properties of the resulting sheet of paper. The amount of polymeric grafts depends on the quantity of anionic groups on fiber's surface and varies monotonically with the grafting temperature and polyacrylamide's concentration in the blend. The grafted fibrous cellulose is well stable, even in drastic media and for lower Mw grafts, and the amount of grafted polymer also depends on the concentration and characteristics of fiber's suspension. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3149–3157, 2006  相似文献   

16.
The production of carboxymethylcellulose (CMC) from bleached cellulose pulps obtained from Posidonia oceanica was explored. The optimal reaction conditions were studied for the carboxymethylation of cellulose in organic liquids. The carboxymethylation reaction was carried out with NaOH and monochloroacetic acid (MAC) as the reagent. Different alcohols were compared in terms of the degree of substitution (DS). The highest DS was obtained with n‐butanol. For this alcohol, the effects of the temperature, alkali concentration, and MAC concentration were studied. The reaction was also carried out in three consecutive steps. The resulting CMC had a DS of about 2.75. The functionalization of cellulose was checked using FTIR spectroscopy and 13C‐NMR. The X‐ray analysis showed that the crystalline structure of cellulose decreased when the DS increased and the structure was totally amorphous in high DS material. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1808–1816, 2006  相似文献   

17.
Additive migration levels in food simulants from polimeric materials that are intended to be into contact with food can be affected by additive stability under the migration test conditions. In this work, the stability of some phenolic antioxidants and one oxidized phosphite antioxidant was studied in four food simulants: distilled water, 3% (w/v) acetic acid, 10% (v/v) ethanol, and the fatty food simulant olive oil, under different temperatures 5, 40, and 70°C, during ~20 days. Samples were analyzed by reversed‐phase high performance liquid chromatography (HPLC) with UV diode‐array detector. In general, antioxidants appeared to be more stable in olive oil than in the aqueous simulants. Among aqueous simulants, water and 10% ethanol allowed the highest stability of antioxidants at low temperatures. The 3% acetic acid allowed good stability for the lowest phenolic compounds even at high temperatures, but the highest molecular weight compounds decomposed very fast even at low temperatures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 656–663, 2006  相似文献   

18.
Durable excellent hydrophobic surface on cellulose substrate was fabricated from the silica hydrosol functionalized with silane chemicals by a facile electrochemically assisted deposition technique. The silica hydrosol was synthesized using tetraethoxysilane (TEOS) as the precursor and sodium dodecylbenzene (SDBS) as the emulsifier under acidic conditions. The hydrophobic silane modifiers including octyltriethoxysiliane (OTES), dodecyltriethoxysiliane (DTES) and isooctyltriethoxysiliane (iso‐OTES) and the silane‐coupling agent γ‐mercaptopropyltriethoxysilane (MPTES) were used to dope the silica hydrosol for preparing durable hydrophobic cellulose surface. The cellulose surface modified with silane modifier iso‐OTES exhibited the best hydrophobicity with water contact angle of 162.3 ± 0.5° due to its non‐polar and hydrolytically stable of ? Si(C8H17) groups. The addition of silane‐coupling agent MPTES containing the ? SH group led to good durability of hydrophobicity with water contact angle of 130.0 ± 1.2° after 20 washing times. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42733.  相似文献   

19.
Five samples of triphenylsilyl cellulose (TPSC) are characterized in solution by osmometry, viscometry, and size exclusion chromatography. The isolated and purified cellulose ethers are prepared in a N,N‐dimethylformamide and pyridine medium under heterogeneous starting conditions and a nitrogen atmosphere by silylation of activated celluloses with triphenylchlorosilane at 115–120°C. TPSCs are characterized by their polydispersities and degrees of substitution by osmometry and viscometry in various solvents. The Mark–Houwink–Sakurada equation coefficients are evaluated in 1,1,1‐trichloroethane, chloroform, and o‐xylene at 30°C and in o‐xylene over a temperature range of 30–70°C. Values of 2.12–2.18 are obtained for exponent a. This indicates, in combination with low values of the preexponential factor (on the order of 10?12), strong stiffness of the macromolecular chains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1257–1261, 2007  相似文献   

20.
Abstract

The influence of nitric acid extraction on the aggregation state of 0.10 M N,N,N′,N′‐tetra‐n‐octyl‐3‐oxapentane‐1,5‐diamide (TODGA) in n‐octane or n‐heptane was studied by small‐angle neutron scattering (SANS) and vapor pressure osmometry (VPO). When the equilibrium concentration of nitric acid in the aqueous phase is less than 0.7 M, TODGA exists as a mixture of monomers and dimers. As the aqueous phase acidity is increased, the extractant molecules form higher aggregates containing up to an average of seven molecules of TODGA. The formation of the larger TODGA aggregates takes place over the same range of aqueous acidities where the extraction of trivalent f‐element cations displays a hyperstoichiometric sixth power nitric acid dependence. This suggests that acid‐driven aggregation of TODGA is responsible for the unusual acid and extractant dependencies observed for the extraction of trivalent metal nitrates with this ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号