首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
采用基于Maisotsenko循环的露点间接蒸发式冷却作为进气冷却的手段,研究了不同环境条件下其对燃气轮机性能的提升效果。建立了针对某9E级燃气轮机的热力循环过程的计算模型,并利用该热力模型分析了进气温度变化对燃机出力的影响。基于Maisotsenko循环的原理,以温降为指标对露点间接蒸发冷却器的性能进行了分析。以功率和效率作为指标,对燃气轮机性能随环境条件的变化情况做了数值模拟,对露点蒸发式冷却与无进气冷却、直接喷雾式冷却对燃机性能的影响进行了计算分析。结果表明,在高温低湿度的条件下,露点间接蒸发式冷却能有效提升燃机性能。  相似文献   

2.
In this paper, a new approach to enhance the performance of gas turbines operating in hot climates is investigated. Cooling the intake air at the compressor bell mouth is achieved by an air Brayton refrigerator (reverse Joule Brayton cycle) driven by the gas turbine and uses air as the working fluid. Fraction of the air is extracted from the compressor at an intermediate pressure, cooled and then expands to obtain a cold air stream, which mixes with the ambient intake. Mass and energy balance analysis of the gas turbine and the coupled Brayton refrigerator are performed. Relationships are derived for a simple open gas turbine coupled to Brayton refrigeration cycle, the heat rejected from the cooling cycle can be utilized by an industrial process such as a desalination plant. The performance improvement in terms of power gain ratio (PGR) and thermal efficiency change (TEC) factor is calculated. The results show that for fixed pressure ratio and ambient conditions, power and efficiency improvements are functions of the extraction pressure ratio and the fraction of mass extracted from the air compressor. The performance improvement is calculated for ambient temperature of 45°C and 43.4% relative humidity. The results indicated that the intake temperature could be lowered below the ISO standard with power increase up to 19.58% and appreciable decrease in the thermal efficiency (5.76% of the site value). Additionally, the present approach improved both power gain and thermal efficiency factors if air is extracted at 2 bar which is unlike all other mechanical chilling methods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Inlet air cooling and cooling of the compressor discharge using water injection boost both efficiency and power of gas turbine cycles. Four different layouts of the recuperated gas turbine cycle are presented. Those layouts include the effect of evaporative inlet and aftercooling (evaporative cooling of the compressor discharge). A parametric study of the effect of turbine inlet temperature (TIT), ambient temperature, and relative humidity on the performance of all four layouts is investigated. The results indicate that as TIT increases the optimum pressure ratio increases by 0.45 per 100 K for the regular recuperated cycle and by 1.4 per 100 K for the recuperated cycle with evaporative aftercooling. The cycles with evaporative aftercooling have distinctive pattern of performance curves and higher values of optimum pressure ratios. The results also showed that evaporative cooling of the inlet air could boost the efficiency by up to 3.2% and that evaporative aftercooling could increase the power by up to about 110% and cycle efficiency by up to 16%.  相似文献   

4.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
《Energy》2006,31(14):2652-2664
This paper focuses on power augmentation of a typical gas turbine cycle by using a desiccant-based evaporative cooling system. This technique requires a desiccant-based dehumidifying process be used to direct the air through an evaporative cooler, which could be either media-based or spray type. This could assist the evaporative cooling cycle to make necessary adjustment for any possible installation defects in a hot and humid climate. We make a comparison between performance improvement achieved by this technique and those of other evaporative cooling systems in different climatic conditions. We will show that our proposed technique, at least for hot and humid climates, is more effective than other evaporative cooling techniques.  相似文献   

6.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years.  相似文献   

7.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Compressor intake-air cooling in gas turbine plants   总被引:3,自引:0,他引:3  
E. Kakaras  A. Doukelis  S. Karellas 《Energy》2004,29(12-15):2347
  相似文献   

9.
The thermal performance of four different arrangements of evaporative air coolers have been evaluated experimentally during the hot summer of Kuwait. The systems include one-stage direct evaporative cooling (DEC), one-stage indirect evaporative cooler (IEC) linked to an external cooling tower, two-stage indirect/direct evaporative coolers (IEC/DEC), and three-stage system of evaporative cooling and mechanical vapor compression (IEC/DEC-MVC). Two variables are used to evaluate the system thermal performance, the thermal effectiveness and the energy efficiency ratio (EER). The data show that the IEC/DEC has the highest EER, followed by the DEC, IEC/DEC-MVC, and IEC. The DEC has the lowest effectiveness, succeeded by the DEC/IEC, IEC, and IEC/DEC-MVC. Coupling MVC with IEC/DEC extends the cooling range and can cool the ambient air dry bulb temperature over a range of 40°C to 15°C at any value of ambient air wet bulb temperature. Two experimental correlations have been developed for each one of the tested systems. The first one relates the effectiveness to water to air mass flow ratio (L/G) or Reynolds number (Re), while the second correlation relates the EER with effectiveness and L/G and/or Re. These relationships are very important in designing and optimizing the studied evaporative cooling units.  相似文献   

10.
直接蒸发冷却技术在火力发电厂的应用   总被引:1,自引:0,他引:1  
叙述了直接蒸发冷却技术的原理及应用于火力发电厂汽轮机房通风的方案,指出,直接蒸发冷却方式与传统的机械制冷方式比较,既加强了通风与换气作用,改善了新风运行环境,还能减少运行费用,实现节能减排,具有较大的经济效益。  相似文献   

11.
This paper proposes the use of artificial neural networks (ANNs) to predict various performance parameters of a direct evaporative air cooler. For this aim, an experimental evaporative cooler was operated at steady‐state conditions, while varying the dry bulb temperature and relative humidity of the entering air along with the flow rates of air and water streams. Using some of the experimental data for training, a three‐layer feed‐forward ANN model based on back propagation algorithm was developed. This model was used for predicting various performance parameters of the cooler, namely the dry bulb temperature and relative humidity of the leaving air, mass flow rate of the water evaporated into the air stream, sensible cooling rate, and effectiveness of the cooler. Then, the performance of the ANN predictions was tested by applying a set of new experimental data. The predictions usually agreed well with the experimental values with correlation coefficients in the range of 0.969–0.993, mean relative errors in the range of 0.66–4.04%, and very low root mean square errors. This study reveals that, as an alternative to classical modelling techniques, the ANN approach can be used successfully for predicting the performance of direct evaporative air coolers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
孙衍锋 《热能动力工程》2017,32(11):117-121
对AE94.3A型燃气轮机燃气-蒸汽联合循环热力系统平衡进行研究进而发现,与同类型、同等级不同型号机组相比,AE94.3A型联合循环机组余热锅炉的排烟温度较高,排烟余热仍有进一步利用的空间。通过设计优化,扩大省煤器受热面,回收烟气余热加热给水,驱动热水型溴化锂制冷机制冷,用于机组满负荷调峰时的压气机进气冷却或厂房及办公区域空调供冷,对改善燃气轮机联合循环的运行性能,实现能源梯级利用,提高能源利用率和机组经济性运行起到了很大作用。  相似文献   

13.
Gas turbine inlet air cooling technologies (GTIAC), mainly including chilling with LiBr/water absorption chiller and fogging as well, are being used during hot seasons to augment the power output. To evaluate the general applicability of inlet air cooling for gas–steam combined cycle power plant (GTCCIAC), parameters such as efficiency ratio, profit ratio and relative payback period were defined and analyzed through off-design performances of both gas turbine and inlet air cooling systems. An analytical method for applicability evaluation of GTCCIAC with absorption chiller (inlet chilling) and saturated evaporative cooler (inlet fogging) was presented. The applicability study based on typical off-design performances of the components in GTCCIAC shows that, the applicability of GTCCIAC with chilling and fogging depends on the design economic efficiency of GTCC power plant. In addition, it relies heavily on the climatic data and the design capacity of inlet air cooling systems. Generally, GTCCIAC is preferable in the zones with high ambient air temperature and low humidity. Furthermore, it is more appropriate for those GTCC units with lower design economic efficiency. Comparison of the applicability between chilling and fogging shows that, inlet fogging is superior in power efficiency at ta = 15–20 °C though it gains smaller profit margin than inlet chilling. GTCC inlet chilling with absorption chiller is preferable in the zones with ta > 25 °C and RH > 0.4.  相似文献   

14.
Abdul Khaliq  Ibrahim Dincer 《Energy》2011,36(5):2662-2670
In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters.  相似文献   

15.
A cogeneration scheme comprising a combined cycle power plant (CCPP) with an absorption chiller used for space cooling is studied. A parametric study investigating the effect of different parameters, such as steam to gas mass flow rate ratio, fraction of turbine steam extraction, ambient temperature, inlet steam turbine temperature, compressor pressure ratio, and gas turbine (GT) combustion efficiency on the performance of the system has been made. In another aspect of the study, the relative advantage of using CCPP with absorption cooling over thermally equivalent mechanical vapor compression (MVC) cooling is also demonstrated.  相似文献   

16.
A Moisture Air Turbine (MAT) cycle is proposed for improving the characteristics of land-based gas turbines by injecting atomized water through an inlet into a compressor. Compressor work of isentropic compression for moist air mixtures with phase change is theoretically considered, which has revealed that water evaporation may reduce compressor work. An experiment using a 15 MW class axial flow load compressor has also verified the theory. Realistic cycle model calculations predict that a 10% power increment by a ratio of 1% water to compressor intake air is expected and also that the amount of water consumption is much less than that of conventional inlet air cooling systems, used for heat rejection at the cooling tower. In addition, thermal efficiency is anticipated to be improved mainly due to the reduction of compressor work. Contrary to the conventional evaporative cooler, a MAT cycle could provide power output at a desired value within its capability regardless of ambient humidity condition.  相似文献   

17.
燃气轮机进气喷水减温技术经济分析及滴径计算   总被引:1,自引:0,他引:1  
夏季环境温度比较高,燃气轮机的出力和热效率都会受到影响,对压气机喷水减温方法和喷水滴径进行了分析和计算,计算结果表明:温度越高,湿度越小,燃气轮机的输出功率和热效率提高得越多,燃油消耗率也降低得越多,喷水减温的效果越好,此外,高的压比和高的透平进气温度提高了喷水减温效果。  相似文献   

18.
This paper presents an experimental investigation of the reduction of energy consumption in a split air-conditioning system employing evaporative cooling of ambient air flowing over the condenser coil. Direct evaporative cooling is employed at the air-cooled condenser of a split air-conditioning system to cool the air flowing over the condenser coils. Different ambient conditions of air were simulated using a heater to mimic typical high temperature environments. The effect of the cooling pad thickness on the performance of the system was investigated by varying the pad thickness from 5 cm to 15 cm in step size of 5 cm. Result shows that the temperature drop experienced by the air is dependent on the thickness of the pad, as well as the condition of the inlet air to the pad. Conditions of the exit air from the pad shows that evaporative cooling can be employed as a stand-alone method for cooling of data centers, with adequate humidity control systems in place, or its output can be used to augment the performance of existing mechanical cooling systems. A decrease in power consumption of the unit is observed, with concomitant increase in coefficient of performance (COP). In addition, results obtained show that up to 44% increase in COP, and a 20% decrease in power consumption can be achieved by employing evaporative cooling. Additionally, the COP was found to increase by about 4% for every 1°C drop in refrigerant condensing temperature. Moreover, a 1°C drop in ambient air temperature causes a drop of 0.6°C in condensing temperature of the refrigerant.  相似文献   

19.
Effect of various inlet air cooling methods on gas turbine performance   总被引:1,自引:0,他引:1  
Turbine air inlet cooling is one of many available commercial methods to improve the efficiency of an existing gas turbine. The method has various configurations which could be utilized for almost all installed gas turbines. This paper presents a comparison between two commons and one novel inlet air cooling method using turbo-expanders to improve performance of a gas turbine located at the Khangiran refinery in Iran. These methods have been applied to one of the refinery gas turbines located at the Khangiran refinery in Iran. Two common air cooling methods use evaporative media or a mechanical chiller. The idea behind the novel method is to utilize the potential cooling and power capacity of the refinery natural gas pressure drop station by replacing throttling valves with a turbo-expander. The study is part of a comprehensive program with the goal of enhancing gas turbine performance at the Khangiran gas refinery. Based on the results, it is found that using turbo-expanders is the most economically feasible option and so is recommended to be utilized for improving gas turbine performance at the Khangiran refinery.  相似文献   

20.
The global cooling demand is one of the fastest growing energy demands and is putting a strain on the electricity infrastructure. Solar-powered cooling could provide most of the cooling demand due to the coincidence of the cooling demand and the solar irradiance. In particular, the solar-powered Stirling-cycle cooler has low maintenance requirement, high theoretical efficiency, and use of environmentally friendly gases. However, Stirling-cycle coolers are expensive due to high driving temperatures, complex heat exchangers, and expensive solar tracking so that they have so far only been successful at high-temperature difference applications. This study introduces a novel directly coupled solar Stirling cooler for which the hot engine cylinders are deployed inside evacuated tube collectors. The machine uses air as working fluid, and its driving mechanism is based on the free-piston, balanced compound technology that was patented by Finkelstein. A second-order mathematical model is used to investigate the performance of the machine for different cylinder arrangements, gas leakage rates, chilling temperatures, and solar irradiance. In addition, the regenerators are optimised to maximise the cold production. It is shown that mechanical frictions can be reduced to 20% by selecting an appropriate cylinder arrangement. The solar cooler achieves a maximum cold production rate of 367.5 W/m2 without using external heat exchangers at load temperature of 7°C, which is comparable with photovoltaic powered coolers. In addition, the machine is relatively simple, has safe and quiet operation, uses ambient air as working gas, and is able to produce a wide range of chilling including sub-zero temperatures without changing the working gas. The direct thermal coupling of the Stirling cooler to evacuated tube collectors significantly reduces the complexity of the machine and removes intermediate heat transfer steps which reduce the performance. Thus, the suggested cooling technology has great potential for solar refrigeration, especially for low power and near ambient cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号