首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new approach to enhance the performance of gas turbines operating in hot climates is investigated. Cooling the intake air at the compressor bell mouth is achieved by an air Brayton refrigerator (reverse Joule Brayton cycle) driven by the gas turbine and uses air as the working fluid. Fraction of the air is extracted from the compressor at an intermediate pressure, cooled and then expands to obtain a cold air stream, which mixes with the ambient intake. Mass and energy balance analysis of the gas turbine and the coupled Brayton refrigerator are performed. Relationships are derived for a simple open gas turbine coupled to Brayton refrigeration cycle, the heat rejected from the cooling cycle can be utilized by an industrial process such as a desalination plant. The performance improvement in terms of power gain ratio (PGR) and thermal efficiency change (TEC) factor is calculated. The results show that for fixed pressure ratio and ambient conditions, power and efficiency improvements are functions of the extraction pressure ratio and the fraction of mass extracted from the air compressor. The performance improvement is calculated for ambient temperature of 45°C and 43.4% relative humidity. The results indicated that the intake temperature could be lowered below the ISO standard with power increase up to 19.58% and appreciable decrease in the thermal efficiency (5.76% of the site value). Additionally, the present approach improved both power gain and thermal efficiency factors if air is extracted at 2 bar which is unlike all other mechanical chilling methods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Energy conservation and increase in performance of air‐conditioning systems could be achieved by pre‐cooling the air intake of the condensers. This paper experiments three different methods of pre‐cooling the condenser air; the cooling pad (CP) setup, the cooling mesh (CM) setup and the shading setup. The CP and CM setups are two different methods of evaporatively cooling the air. The three methods have been applied to three identical, 2.8 tons, split air‐conditioning units during the peak summer time period in Kuwait, under ambient temperatures ranging from 39 to 45°C. The results yielded a drop in the power consumption ranging from 8.1 to 20.5% and an increase in the cooling load ranging from 6.4 to 7.8% by using the CP and CM setups, which, in turn, resulted in an increase in the coefficient of performance (COP) of the units by 36–59%. The shading setup has resulted in an increase of power consumption due to air trapped below the shaded area, which resulted in heat being generated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The gas turbine performance is highly sensitive to the compressor inlet temperature. The output of gas turbine falls to a value that is less than the rated output under high temperature conditions. In fact increase in inlet air temperature by 1°C will decrease the output power by 0.7% approximately. The solution of this problem is very important because the peak demand season also happens in the summer. One of the convenient methods of inlet air cooling is evaporating cooling which is appropriate for warm and dry weather. As most of the gas turbines in Iran are installed in such ambient conditions regions, therefore this method can be used to enhance the performance of the gas turbines. In this paper, an overview of technical and economic comparison of media system and fog system is given. The performance test results show that the mean output power of Frame‐9 gas turbines is increased by 11 MW (14.5%) by the application of media cooling system in Fars power plant and 8.1 MW (8.9%) and 9.5 MW (11%) by the application of fog cooling system in Ghom and Shahid Rajaie power plants, respectively. The total enhanced power generation in the summer of 2004 was 2970, 1701 and 1340 MWh for the Fars, Ghom and Shahid Rajaie power plants, respectively. The economical studies show that the payback periods are estimated to be around 2 and 3 years for fog and media systems, respectively. This study has shown that both methods are suitable for the dry and hot areas for gas turbine power augmentation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
本文研究了利用余热制冷进气冷却的回热燃气轮机系统,并对该系统性能进行了模拟计算,得到了压比、流量比等参数对系统性能的影响规律。并通过与常规回热循环比较,指出利用余热制冷来进气冷却的方式能使系统效率提高11%,是提高燃气轮机系统性能的有效途径之一。  相似文献   

6.
The potential of using thermal energy storage (TES) in the form of ice or chilled water to cool gas turbine inlet air is evaluated for a remote oil field location in the Sultanate of Oman using local hourly typical meteorological year weather data. It is found that under the conditions investigated seasonal TES in chilled water storage tanks or ice bins for the location considered is prohibitively expensive and thus not recommended. Application of partial TES option shows that the cool storage does not result in any noticeable reduction in the chiller size. Hence, TES whether seasonal, partial, or full storage is not a viable option for the considered location, especially in the absence of time‐of‐use utility rate structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
大型燃气轮机透平冷却空气量估算   总被引:1,自引:0,他引:1  
大型燃气轮机透平冷却空气量一般难以直接获得。本文从燃机总体物质与能量平衡的角度,结合透平一级静叶的冷却模型,给出了一种估算大型燃气轮机冷却空气量的方法,并对GE公司系列燃气轮机和西门子公司V94.3燃气轮机冷却空气量进行了估算。结果表明采用本文的方法估算的燃气轮机透平冷却空气量是合理的。  相似文献   

8.
燃气轮机进气冷却技术发展现状及前景分析   总被引:4,自引:1,他引:4  
分析了燃气轮机进气冷却的必要性,介绍了国内外目前应用的几种燃气轮机进气冷却技术的发展现状,分析了各自特点并对发展前景进行了展望。  相似文献   

9.
西门子公司V94.3燃气轮机冷却空气信息推测   总被引:3,自引:0,他引:3  
作为建立燃用低热值合成气的燃气轮机变工况模型的一个关键步骤,对西门子V94.3燃气轮机冷却空气参数及其分配进行了研究,试图从公开发表的燃气轮机功率、压比、排气温度、三亿透平初温等数据中推测出冷却空气量的分配规律。计算和推测所得到的冷却空气参数和分配规律与燃机净功率以及ISO温度基本吻合。  相似文献   

10.
The prototype of combined vapour compression–absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7°C, the inlet and outlet temperatures of cooling water are 30 and 35°C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Effect of various inlet air cooling methods on gas turbine performance   总被引:1,自引:0,他引:1  
Turbine air inlet cooling is one of many available commercial methods to improve the efficiency of an existing gas turbine. The method has various configurations which could be utilized for almost all installed gas turbines. This paper presents a comparison between two commons and one novel inlet air cooling method using turbo-expanders to improve performance of a gas turbine located at the Khangiran refinery in Iran. These methods have been applied to one of the refinery gas turbines located at the Khangiran refinery in Iran. Two common air cooling methods use evaporative media or a mechanical chiller. The idea behind the novel method is to utilize the potential cooling and power capacity of the refinery natural gas pressure drop station by replacing throttling valves with a turbo-expander. The study is part of a comprehensive program with the goal of enhancing gas turbine performance at the Khangiran gas refinery. Based on the results, it is found that using turbo-expanders is the most economically feasible option and so is recommended to be utilized for improving gas turbine performance at the Khangiran refinery.  相似文献   

12.
An experiment was performed to simulate an air‐cooling panel system for passive decay heat removal from a high‐temperature gas‐cooled reactor to investigate the performance of decay heat removal and the temperature distributions of components of the system. The experimental apparatus consisted of a pressure vessel 1 m wide and 3 m high. Nineteen simulated standpipes containing heaters with a maximum heating rate of 100 kW simulated residual heat of the core, and the cooling panels surrounded the pressure vessel. An analytical code (THANPACST2) was applied to the experimental data to investigate the validity of the analytical method and the model proposed. Under the conditions of helium gas at a pressure of 0.64 MPa and temperature of 514 °C in the pressure vessel, the predicted temperature distribution in the pressure vessel was estimated and was within ?10 to +50 °C as compared to the experimental data. The analysis indicated that the heat transferred to the cooling panel was 15.4% less than the experimental value. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(8): 665–677, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10061  相似文献   

13.
This paper reports on a feasibility study of a solar-powered heating/cooling system for a swimming pool/space combination in a tropical environment. The system utilizes an absorption chiller and a cooling tower to meet the facilities and locker room load. The heating is accomplished by employing hot water generated by heat exchange with the solar collector working fluid. Two thermal storage tanks were employed for the collector and domestic use. The absorption chiller utilizes hot water to regenerate the LiBr solution. The proposed system enables the swimming season to be extended from sixteen weeks to fifty-two weeks. Simulation results indicate that a combination of a double glazed collector area of 600–4800 m2 and a storage tank volume of 11·36 m3 results in a 25–37% reduction in the consumption of natural gas. Economic analysis is performed based on the life-cycle-cost method and takes into account the effects of discount rate, fuel price and fuel inflation rate. Different scenarios for which the solar-assisted system is economical are presented and analysed. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
This paper compares the performance characteristics of refrigeration systems employing three types of condensers, namely the air‐cooled, the water‐cooled and the evaporative condensers. Experimental studies were conducted in the same vapour‐compression refrigeration unit operating with a different condenser in each test. It was found that the system with water‐cooled condenser had a higher refrigeration capacity by 2.9–14.4%, and a higher COP by 1.5–10.2% than the one with evaporative condenser. However, the refrigeration capacity and COP of the unit with evaporative condenser were higher than those of the one with air‐cooled condenser by 31.0 and 14.3%, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
燃气轮机进气喷水减温技术经济分析及滴径计算   总被引:1,自引:0,他引:1  
夏季环境温度比较高,燃气轮机的出力和热效率都会受到影响,对压气机喷水减温方法和喷水滴径进行了分析和计算,计算结果表明:温度越高,湿度越小,燃气轮机的输出功率和热效率提高得越多,燃油消耗率也降低得越多,喷水减温的效果越好,此外,高的压比和高的透平进气温度提高了喷水减温效果。  相似文献   

16.
A locomotive cabin adsorption air‐conditioner has been equipped in #DF4B‐2369 locomotive; and has been successfully run for 2 years. It is powered by waste heat from the exhaust of the diesel engine. The influence on heat transfer is described by the equivalent heat transfer coefficient or thermal resistance of components inside the adsorber. The variation of adsorption capacity is expressed by a non‐equilibrium adsorption function. The dynamic heat transfer process of adsorption air‐conditioning system is treated with the lumped parameter method. Some typical running experimental results are present. The diesel engine rotating speed and locomotive speed influenced on the refrigeration system are discussed. The maximum mean refrigeration power is regarded as an objective function. Based on experiments and theoretical analysis, the running characteristics of the air‐conditioning system are optimized. Some techniques of performance improvement are suggested as well. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Humidified gas turbine cycles such as the humidified air turbine (HAT) and the steam-injected gas turbine (STIG) present exciting new prospects for industrial gas turbine technology, potentially offering greatly increased work outputs and cycle efficiencies at moderate costs. The availability of humidified air or steam in such cycles also presents new opportunities in blade and disk cooling architecture. Here, the blade cooling optimisation of a HAT cycle and a STIG cycle is considered, first by optimising the choice of coolant bleeds for a reference cycle, then by a full parametric optimisation of the cycle to consider a range of optimised designs. It was found that the coolant demand reductions which can be achieved in the HAT cycle using humidified or post-aftercooled coolant are compromised by the increase in the required compression work. Furthermore, full parametric optimisation showed that higher water flow-rates were required to prevent boiling within the system. This corresponded to higher work outputs, but lower cycle efficiencies. When optimising the choice of coolant bleeds in the STIG cycle, it was found that bleeding steam for cooling purposes reduced the steam available for power augmentation and thus compromised work output, but that this could largely be overcome by reducing the steam superheat to give useful cycle efficiency gains.  相似文献   

18.
Power generation is one of the major industries or businesses globally. Although, at present, a major attention has been paid towards the sustainable energy technologies, both gas and steam turbines are still heavily used in the power generation sector worldwide. Usually, gas turbines are used to drive an electrical power generator in simple systems, or they are used in combined cycle plants together with steam turbines. This paper presents a comprehensive review on modelling of heat transfer and fluid flow in hot section of gas turbines used in the power generation sector. Visibly, heat transfer and fluid flow characteristics directly affect the thermal efficiency and the overall performance of the gas turbines. Hence, existing models relating to heat transfer and fluid flow inside gas turbines are discussed in detail. Primarily, methods relating to the first principle modelling, empirical modelling, and finite element modelling are reviewed comprehensively, and then, a discussion is provided together with a comparison among models in terms of their advantages and disadvantages. Moreover, some existing issues such as the environmental impact are discussed which still remain as challenges to the power generation industry together with some of the possible future directions for improvements.  相似文献   

19.
In the present paper, an attempt has been made to review the performance of new refrigerant mixtures employed in vapour compression‐based refrigeration, air‐conditioning and heat pump units. The studies reported with refrigerant mixtures are categorized into six groups as follows: (i) hydrocarbon (HC), (ii) hydroflurocarbons (HFC), (iii) HFC/HC, (iv) hydrochloroflurocarbons (HCFC), (v) carbon dioxide (R744) and (vi) ammonia (R717). This paper explores the studies reported with new refrigerant mixtures in domestic refrigerators, commercial refrigeration systems, air conditioners, heat pumps, chillers and in automobile air conditioners. In addition, the technical difficulties faced with new refrigerant mixtures, further research needs in this field and future refrigerant options for new upcoming systems have been discussed in detail. This paper concludes that HC based refrigerant mixtures are identified as a long‐term alternative to phase out the existing halogenated refrigerants in the vapour compression‐based systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
To achieve hydrogen‐rich and low‐tar producer gas, multi‐stage air‐blown and air‐steam gasification processes were studied in this research. Results showed that the tar content from multi‐stage air‐blown and air‐steam gasification were lower, compared to the average value of that from downdraft gasification. In the cases of air supplies of 80, 100 l min?1 and 100, 100 l min?1 with steam, hydrogen yields were increased by 40.71 and 41.62%, respectively, compared to that without steam. These were about 1.6 times of hydrogen flow rate of the base case (S/B = 0). However, it was found that too much steam added to the process was disadvantageous. The equilibrium model was also applied to predict the hydrogen production and the composition of producer gas obtained from the multi‐stage air‐blown and air‐steam gasification processes. The predicted result showed a better match for the case of multi‐stage air‐blown gasification process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号