首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrahigh molecular weight polyethylene (UHMWPE) is available commercially in the form of powder, consisting of fine primary particles, 1–5 μm in diameter, agglomerated into secondary “free‐flowing” particles with overall dimensions in the region of 50 to 150 μm. These are normally sufficiently coherent and retain their conglomerated particulate structure when blended with other polymers because of the extremely high viscosity of UHMWPE. In this study the surface of the agglomerated primary particles was acid functionalized by reactions with aqueous solutions of acrylic acid, after being irradiated with γ‐radiation at 15–45 kGy. The acid groups were used to introduce a glycidoxyl functionality through reactions with a difunctional cycloaliphatic epoxy resin and also to a “partial” metal carboxylate functionality through reactions with zinc acetyl acetonate. When blended with polyethylene terephthalate (PET) in either a small‐batch mixer or in a twin‐screw extruder all the treated powders, except those functionalized with acrylic acid, were broken down to their primary size and were uniformly dispersed and strongly bonded to the surrounding matrix. The blends containing the deglomerated particles were found to have much greater ductility and toughness than those produced from both untreated and acid functionalized powder. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2972–2986, 2001  相似文献   

2.
This work presents the structure and impact properties of phenolphthalein poly(ether sulfone) blended with ultrahigh molecular weight polyethylene (PES-C/UHMWPE) at different compositions. The addition of UHMWPE can considerably improve the Charpy and Izod impact strength of the blends. The fracture surface is examined to demonstrate the toughening mechanics related to the modified PES-C resin. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 113–118, 1998  相似文献   

3.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
The capillary flow properties and morphologies of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends were studied. The results show that UHMWPE is difficult to process. The melts flowed unsteadily at lower shear rate. With 10 wt % PP contained in the UHMWPE/PP blends, the apparent melt viscosity was much lower than that of UHMWPE. When the PP content increased to 20 and 30 wt %, no pressure vibration occurred throughout the whole shear rate range. Microstructure analysis showed that PP prefers to locate in the amorphous or low crystallinity zones of the UHMWPE matrix. The flowability of UHMWPE increased substantially with the addition of PP. The addition of PE could not effectively reduce the chain entanglement density of UHMWPE. The improvement of processability of UHMWPE by the addition of PE was rather limited. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3894–3900, 2004  相似文献   

5.
Poly(ethylene glycol) (PEG) has been widely used in studies of polymer–clay nanocomposites because it readily intercalates in smectite clays. Nanocomposites were formed from PEG with molecular weights (Mw) ranging from 300 to 20,000, as evidenced by expansion of the basal planar spacing of the clay (d001) in X‐ray diffraction. However PEG with high molecular weight (≥ 10,000) readily underwent degradation during preparation of composites when heated at low temperature (60°C) due to oxidative attack. Molecular weight distribution determined by gel permeation chromatography showed that this degradation always happened with or without the presence of clay and it became more serious when the molecular weight was higher. The reduction in pH of aqueous PEG solutions after degradation increased with molecular weight. Since d001 was independent of molecular weight over a wide range, such degradation cannot be detected by this method. Precautions against oxidative attack are therefore recommended to avoid decomposition when preparing PEG–clay nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 548–552, 2004  相似文献   

6.
The intrinsic viscosity of polystyrene–poly(ethylene oxide) (PS–PEO) and PS–poly(ethylene glycol) (PEG) blends have been measured in benzene as a function of blend composition for various molecular weights of PEO and PEG at 303.15 K. The compatibility of polymer pairs in solution were determined on the basis of the interaction parameter term, Δb, and the difference between the experimental and theoretical weight-average intrinsic viscosities of the two polymers, Δ[η]. The theoretical weight-average intrinsic viscosities were calculated by interpolation of the individual intrinsic viscosities of the blend components. The compatibility data based on [η] determined by a single specific viscosity measurement, as a quick method for the determination of the intrinsic viscosity, were compared with that obtained from [η] determined via the Huggins equation. The effect of molecular weights of the blend components and the polymer structure on the extent of compatibility was studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1471–1482, 1998  相似文献   

7.
This paper reports the measured values of dielectric permittivity ε′ and dielectric loss ε″ of ethylene glycol, diethylene glycol and poly(ethylene glycol)s of average molecular weight 200, 300, 400 and 600 g mol−1 in the pure liquid state. The measurements have been carried out in the frequency range 200 MHz to 20 GHz at four different temperatures of 25, 35, 45 and 55 °C. The complex plane plots (ε″ versus ε′) of these molecules are Cole–Cole arcs. The static dielectric constant ε0, high‐frequency limiting dielectric constant ε, average relaxation time τ0 and distribution parameter α have been determined from these plots. The value of the Kirkwood correlation factor g and the dielectric rate free energy of activation ΔF have also been evaluated. The dependence of relaxation time on molecular size and viscosity has been discussed. A comparison has also been made with the dielectric behaviour of these molecules in dilute solutions of non‐polar solvents, which were carried out earlier in this laboratory. The influences of intermolecular hydrogen bonding and molecular chain coiling on the dielectric relaxation of these molecules have been recognized. © 2000 Society of Chemical Industry  相似文献   

8.
Poly(L‐lactide)‐poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. The reaction was carried out under mild conditions, using dicyclohexylcarbodiimide as the coupling agent and dimethylaminopyridine as the catalyst. The resulting copolymers were characterized by various analytical techniques, such as GPC, viscometry, 1H‐NMR, FTIR, DSC, X‐ray diffractometry, and contact angle measurement. The results indicated that these copolymers presented outstanding properties pertinent to biomedical use, including better miscibility between the two components, low crystallinity, and hydrophilicity. Moreover, the properties of the copolymers can be modulated by adjusting the block length of the two components or the reaction conditions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1729–1736, 2002; DOI 10.1002/app.10580  相似文献   

9.
Fluorocarbon‐ or hydrocarbon‐end‐capped poly(ethylene glycol) (PEG) macromonomers were prepared with coupling methods. Several factors affecting the synthesis were studied, and the optimal condition was ascertained. The critical micelle concentrations of these macromonomers were determined with the fluorescence method. Novel fluorocarbon‐containing, hydrophobically modified, alkali‐soluble copolymers were made by the copolymerization of fluorocarbon‐ or hydrocarbon‐alkyl‐end‐capped PEG macromonomers with acrylic acid in an organic solvent. The effects of the macromonomer contents, polymerization conditions, spacer, temperature, shear rate, pH, and addition of salt and various surfactants on the solution viscosity were preliminarily investigated. A very strong hydrophobic association was found for these copolymer solutions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1035–1047, 2002; DOI 10.1002/app.10393  相似文献   

10.
The processing of ultrahigh molecular weight polyethylene (UHMWPE) by the addition of polypropylene (PP) and high‐density polyethylene (HDPE) was investigated. The results show that the addition of PP improves the processability of UHMWPE more effectively than does the addition of HDPE. UHMWPE/PP blends can be effectively processed with a twin‐roller and general single‐screw extruder. In the extrusion of UHMWPE/PP blends, PP is enriched at the surface of the blend adjacent to the barrel wall, thus increasing the frictional force on the wall; the conveyance of the solid down to the channel can then be carried out. The melt pool against the active flight flank exerts a considerable pressure on the UHMWPE powder in the passive flight flank, which overcomes the hard compaction of UHMWPE. The PP penetrates into the gaps between the particles, acting as a heat‐transfer agent and adhesive, thus enhancing the heat‐transfer ability in the material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 977–985, 2004  相似文献   

11.
The viscous behavior of the decalin solution of ultrahigh molecular weight polyethylene (UHMEPE) was studied. The influence of the concentration of polymer as well as the temperature was investigated. The flow curve can be described by the power-law model. The dependence of the viscosity on the temperature can be described by the Arrhenius–Frenkel–Eyring equation. The dependence of viscosity on the concentration can also be described by a power-law correlation. The addition of aluminum stearate increased the activation energy of flow of the solution. The viscosity of UHMWPE solution was decreased at lower concentration and increased at higher concentration of UHMWPE. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:289–293, 1997  相似文献   

12.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

13.
In this article, we describe the synthesis and solution properties of PEG‐b‐PTMC star block copolymers via ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) monomer initiated at the hydroxyl end group of the core PEG using HCl Et2O as a monomer activator. The ROP of TMC was performed to synthesize PEG‐b‐PTMC star block copolymers with one, two, four, and eight arms. The PEG‐b‐PTMC star block copolymers with same ratio of between hydrophobic PTMC and hydrophilic PEG segments were obtained in quantitative yield and exhibited monomodal GPC curves. The amphiphilic PEG‐b‐PTMC star block copolymers formed spherical micelles with a core–shell structure in an aqueous phase. The mean hydrodynamic diameters of the micelles increased from 17 to 194 nm with increasing arm number. As arm number increased, the critical micelle concentration (CMC) of the PEG‐b‐PTMC star block copolymers increased from 3.1 × 10?3 to 21.1 × 10?3 mg/mL but the partition equilibrium constant, which is an indicator of the hydrophobicity of the micelles of the PEG‐b‐PTMC star block copolymers in aqueous media, decreased from 4.44 × 104 to 1.34 × 104. In conclusion, we confirmed that the PEG‐b‐PTMC star block copolymers form micelles and, hence, may be potential hydrophobic drug delivery vehicles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The degradation of ultrahigh molecular weight polyethylene (UHMW‐PE) during its dissolution into decalin is discussed. The stabilization of the solution by three phenolic antioxidants, octadecyl β‐(3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)propionate (1076), tetrakis[methylene‐β‐(3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)propionate]methane (1010), and 1,1,3‐tris(2‐methyl‐4‐hydroxy‐5‐tert‐butylphenyl)butane (CA), and an auxiliary antioxidant, dilaurylthiodipropionate (DLTP) is also discussed. Among the three phenolic antioxidants, 1076 had the greatest effect. The auxiliary antioxidant was effective in stabilizing the solution when combined with one of the three phenolic antioxidants. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2877–2881, 2000  相似文献   

15.
A polyblend of poly(ortho esters)–poly(ethylene glycol) (POE–PEG) was prepared. The release behavior of the acetanilide‐loaded film of the POE–PEG polyblend was studied. Blending POE with water‐soluble PEG can promote the release of drug in pH 7.4 PBS buffer at 37°C, while POE has plasticizing effect on PEG. Infrared and X‐ray diffraction studies reveal that there is some interaction between POE and acetanilide. The SEM micrographs disclose that the porosity of the drug‐loaded film enhances with an increase immersing time. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 303–309, 1999  相似文献   

16.
A series of carboxyl‐terminated poly(ethylene glycol) adipate (CTPEGA) was synthesized by polycondensation of poly(ethylene glycol) (PEG) of various molecular weights (“2000,” “4000,” “6000,” “8000,” “10,000” g/mol) and adipic acid. CTPEGA was incorporated into the epoxy by a prereaction method. The CTPEGA and modified epoxy samples were thoroughly characterized by Fourier transform infrared spectroscopy, 1H NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography. The effects of molecular weight of CTPEGA on thermomechanical and viscoelastic properties of the modified epoxy networks were investigated. Maximum improvement in impact strength was found for the epoxy network modified with CTPEGA containing PEG of molecular weight 2000 g/mol. With further increase in molecular weight of CTPEGA, the impact strength of the modified network decreases. However, in case of higher molecular weight CTPEGA, the improvement in toughness was achieved without any reduction in Tg due to the complete phase separation. The results were explained in terms of morphology studied by scanning electron microscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1723–1730, 2007  相似文献   

17.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

18.
Poly(butylene 2,6‐naphthalate) (PBN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two‐step melt copolymerization process of dimethyl‐2,6‐naphthalenedicarboxylate (2,6‐NDC) with 1,4‐butanediol (BD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structures, thermal properties, and hydrophilicities of these copolymers were studied by 1H NMR, DSC, TGA, and by contact angle and moisture content measurements. In particular, the intrinsic viscosities of PBN/PEG copolymers increased with increasing PEG molecular weights, but the melting temperatures (Tm), the cold crystallization temperatures (Tcc), and the heat of fusion (ΔHf) values of PBN/PEG copolymers decreased on increasing PEG contents or molecular weights. The thermal stabilities of the copolymers were unaffected by PEG content or molecular weight. Hydrophilicities as determined by contact angle and moisture content measurements were found to be significantly increased on increasing PEG contents and molecular weights. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2677–2683, 2006  相似文献   

19.
陈晓明 《化学工程师》2012,26(3):14-16,32
测定了聚乙二醇(PEG)在十二烷基硫酸钠(SDS)和琥珀酸双-2-乙己酯磺酸钠(AOT)水溶液中的粘度,讨论了SDS和AOT在水溶液中聚集形态的差异对PEG与SDS和AOT相互作用的不同影响,结果表明:PEG-SDS与PEG-AOT体系粘度均明显增加,而PEG-SDS与PEG-AOT体系粘度变化机制不同,根本原因是表面活性剂在高分子溶液中聚集行为不同,SDS分子在PEG链上聚集,形成类胶束,使高分子链带电,表现出聚电解质的粘度行为;PEG链吸附于AOT囊泡,不同PEG链对囊泡的吸附可能造成高分子链更加伸展,PEG特性粘数增大,使溶液粘度上升。  相似文献   

20.
Dimethyl terephthalate (DMT) and ethylene glycol (EG) were used for the preparation of poly(ethylene terephthalate) (PET), and poly(ethylene glycol) (PEG) was added as a soft segment to prepare a PET–PEG copolymer with a shape‐memory function. MWs of the PEG used were 200, 400, 600, and 1000 g/mol, and various molar ratios of EG and PEG were tried. Their tensile and shape‐memory properties were compared at various points. The glass‐transition and melting temperatures of PET–PEG copolymers decreased with increasing PEG molecular weight and content. A tensile test showed that the most ideal mechanical properties were obtained when the molar ratio of EG and PEG was set to 80:20 with 200 g/mol of PEG. The shape memory of the copolymer with maleic anhydride (MAH) as a crosslinking agent was also tested in terms of shape retention and shape recovery rate. The amount of MAH added was between 0.5 and 2.5 mol % with respect to DMT, and tensile properties and shape retention and recovery rate generally improved with increasing MAH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 27–37, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号