首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, polyvinyl alcohol/organically modified montmorillonite (HDA/MMT; organoclay) composite was prepared for the intercalation processes. Firstly, the rheological behavior of aqueous montmorillonite dispersions was investigated as a function of solid content. Hexadecylamine (HDA) was added to the montmorillonite dispersion (2%, w/w) in different concentrations in the range of 5 × 10?4 – 9 × 10?3 mmol/L. The basal spacing of the organoclay (OMMT) was studied by X‐ray diffraction. The FTIR spectra are obtained from the modified montmorillonite products, which revealed the characteristic absorbencies after treatment with HDA. HDA/MMT/PVA composite, which was produced by the reaction of 1 wt % PVA solution with organoclay complex, is characterized by the rheology, electrokinetic, XRD, FTIR, and SEM techniques. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:2315–2323, 2006  相似文献   

2.
A strategy to design intercalated montmorillonite nanocomposites has been explored. A commercial organoclay, 1.34 TCN (Nanocor Inc.), with bis(2‐hydroxylethy1) methy1 tallow ammonium, was modified by tolylene 2,4‐diisocyanate (TDI) and bisphenol A (BA). Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) results of unmodified and modified 1.34 TCN (1.34‐TDI‐BA) indicate that TDI and BA have reacted with hydroxy1 groups on the surface of 1.34 TCN and hydroxy1 groups in the interlayer of 1.34 TCN. Using a classical two‐stage cure process with diamine as curing agent, intercalated epoxy nanocomposites were prepared for both types of organoclays. XRD and TEM results showed that the basal spacing of clay in nanocomposites was 3.68 and 4.42 nm for 1.34 TCN and 1.34‐TDI‐BA, respectively. Dynamic mechanical analysis (DMA) was performed on both modified and unmodified organoclay composites. Modified organoclay composites were found to have enhanced storage moduli, particularly at temperatures higher than the glass transition, Tg, of the matrix. Glass transition temperatures extracted from linear viscoelastic data are found to be slightly higher for modified organoclay nanocomposites, indicating enhanced interactions between the modified organoclay and the epoxy matrix. These results were also confirmed by independent measurements of Tg using differential scanning calorimetry (DSC).  相似文献   

3.
We present a novel approach to improving organoclay exfoliation in a nonpolar matrix, polyethylene. High‐density polyethylene (HDPE) particles were modified by exposure to a reactive gas atmosphere containing F2 and O2. This treatment was aimed at increasing the polarity of the polymer with the formation of carboxyl, hydroxy, and ketone functionalities on the particle surface. The surface‐treated high‐density polyethylene (ST‐HDPE) particles were then melt‐mixed with an appropriate organoclay to form nanocomposites. Transmission electron microscopy (TEM), wide‐angle X‐ray scattering, stress–strain analysis, and Izod impact measurements were used to evaluate the nanocomposite morphology and physical properties. These data were compared to those of equivalent nanocomposites prepared from unmodified HDPE and high‐density polyethylene grafted with maleic anhydride (HDPE‐g‐MA). The nanocomposites prepared from the ST‐HDPE particles exhibited much better properties and organoclay dispersion than those prepared from unmodified HDPE. The level of reinforcement observed in ST‐HDPE‐based nanocomposites was comparable to, if not better than, that seen in HDPE‐g‐MA‐based nanocomposites. However, a comparison of the TEM micrographs suggested better organoclay exfoliation in HDPE‐g‐MA than the current version of ST‐HDPE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2980–2989, 2006  相似文献   

4.
Natural rubber nanocomposites were produced by melt‐mixing of natural rubber with organically modified silicates. For comparison, a pristine‐layered silicate and a nonlayered version [English Indian clay (EIC)] were also included in the study. The layered silicate used was sodium bentonite (BNT) and organoclays used were octadecylamine‐ modified montmorillonite (MMT‐ODA) and methyltallow bis‐2‐hydroxyethyl ammonium‐modified montmorillonite (MMT‐ TMDA). Accelerated sulfur system was used for the vulcanization of the nanocomposites. The dispersion of these silicates was studied by X‐ray diffraction and transmission electron microscopy. The organoclay‐incorporated composites exhibited faster curing and improved mechanical properties. The improvement in the mechanical properties of the composites followed the order MMT‐ODA > MMT‐TMDA > EIC > BNT. The property improvement was attributed to the intercalation/exfoliation of the organically modified silicates because of their high initial interlayer distance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2537–2543, 2006  相似文献   

5.
The yield behavior of melt‐mixed nanocomposites containing 5 wt % organically modified montmorillonite in matrices of a linear low‐density polyethylene (LLDPE) or a modified polyethylene was studied as a function of the temperature and strain rate. In the melt‐mixed LLDPE nanocomposite, the montmorillonite showed a slight increase in the clay spacing, which suggested that the clay was at best intercalated. Transmission electron microscopy (TEM) images showed that the dispersion in this nanocomposite was poor. The use of the modified polyethylene promoted exfoliation of the clay tactoids in the nanocomposite, as assessed by X‐ray diffraction and TEM. In both nanocomposites, the yield mechanisms were insensitive to the addition of the organoclay, even though modest increases in the modulus were produced. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3044–3049, 2006  相似文献   

6.
Hybrid nanocomposite coating films, prepared by the incorporation of epoxidized sunflower oil into organoclay, can be cured by ultraviolet radiation with either cationic or hybrid initiation. The organoclay used in this study was prepared by a cationic exchange process in which sodium ions were replaced by alkyl ammonium ions. The effects of types of photoinitiators on energy consumption in the curing process were studied. Formulations with a hybrid photoinitiator required less energy in the curing process than those with a cationic photoinitiator. Moreover, the physical properties of dried films were examined as a function of the organoclay incorporation, and it was found that the hardness of the films increased as the amount of organoclay in the formulation increased. The X‐ray diffraction patterns of an ultraviolet‐curable organoclay‐incorporated film showed an exfoliated structure of the organoclay in the ultraviolet‐curable coating film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The pristine sodium montmorillonite (MMT) was organically modified with hexadecyltrimethylammonium bromide (HTAB) at different contents. The organoclay was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, energy dispersive X‐ray techniques, and thermogravimetric analysis. Then, poly(butylene succinate) (PBS) nanocomposites were prepared by melt‐mixing process using maleic anhydride‐grafted PBS (PBS‐g‐MA) as compatibilizer. It was found that the mechanical properties of PBS nanocomposites filled with organoclay were apparently higher than that of the nanocomposite filled with MMT. This is attributed to the better filler–matrix interactions between PBS and the organoclay and the better filler dispersion. This is verifiable through the XRD, scanning electron microscopy, and transmission electron microscopy. The addition of PBS‐g‐MA further improved the mechanical properties. It was also found that our laboratory synthesized organoclay modified with HTAB has provided a better reinforcing efficiency when compared with the commercial octadecylamine‐modified organoclay. Besides that the thermal properties of PBS nanocomposites were studied through differential scanning calorimetry. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
Layered‐silicate‐based polymer–clay nanocomposite materials were prepared depending on the surface modification of montmorillonite (MMT). Nanocomposites consisting of poly(butylene terephthalate) (PBT) as a matrix and dispersed inorganic clay modified with cetyl pyridinium chloride (CPC), benzyl dimethyl N‐hexadecyl ammonium chloride, and hexadecyl trimethyl ammonium bromide by direct melt intercalation were studied. The organoclay loading was varied from 1 to 5 wt %. The organoclays were characterized with X‐ray diffraction (XRD) to compute the crystallographic spacing and with thermogravimetric analysis to study the thermal stability. Detailed investigations of the mechanical and thermal properties as well as a dispersion study by XRD of the PBT/clay nanocomposites were conducted. X‐ray scattering showed that the layers of organoclay were intercalated with intercalating agents. According to the results of a differential scanning calorimetry analysis, clay acted as a nucleating agent, affecting the crystallization. The PBT nanocomposites containing clay treated with CPC showed good mechanical properties because of intercalation into the polymer matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Biobased nanocomposites and composite fibers were prepared from organosolv lignin/organoclay mixtures by mechanical mixing and subsequent melt intercalation. Two organically‐modified montmorillonite (MMT) clays with different ammonium cations were used. The effect of organoclay varying from 1 to 10 wt % on the mechanical and thermal properties of the nanocomposites was studied. Thermal analysis revealed an increased in Tg for the nanocomposites as compared with the original organosolv lignin. For both organoclays, lignin intercalation into the silicate layers was observed using X‐ray diffraction (XRD). The intercalated hybrids exhibited a substantial increase in tensile strength and melt processability. In the case of organoclay Cloisite 30B, X‐ray analysis indicates the possibility of complete exfoliation at 1 wt % organoclay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
We prepared polypropylene nanocomposites based on a modified organoclay with isobutyl trimethoxysilane to investigate the effects of such modifications of organoclay on the microstructure and properties of the nanocomposite. The organoclay was preliminarily intercalated with distearyldimethylammonium bromide via an ion exchange before being grafted with silane. The morphology of the polypropylene–organoclay nanocomposites was characterized by wide‐angle X‐ray diffraction analyses and transmission electron microscopy. The modification of the edges of clay platelets with organic silane resulted in a more uniform dispersion of nonagglomerated tactoids, which consisted of several intercalated clay platelets. However, the unmodified organoclay led to a mixed morphology with both agglomerated and nonagglomerated tactoids. The grafting of the clay edges with organic silane also affected the linear viscoelastic properties of the nanocomposites in the melt state, which was shown to be sensitive to the interaction between the edges of clay platelets as well as to the interaction of the polymer with the platelet edges. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1752–1759, 2006  相似文献   

11.
Sodium‐montmorillonite nanoclay was modified with octadecylamine and compounded with natural rubber (NR) by dry mixing method. The effects of organoclay loading level on mechanical properties, thermal–mechanical behavior, and heat build‐up of NR/organoclay nanocomposites were investigated. Temperature scanning stress relaxation technique was used to characterize the thermal–mechanical behavior of the composites. The morphological properties were assessed by X‐ray diffraction and transmission electron microscopy. Loading levels of organoclay below 5 phr gave improved mechanical properties and heat build‐up, along with exfoliated clay structure in the nanocomposites. On the other hand, with loading levels above 7 phr the organoclay tended to agglomerate, and X‐ray diffraction revealed an intercalated structure. In these cases, the excess residual organoclay caused significantly increased stress relaxation and heat build‐up. Unmodified sodium‐montmorillonite as filler did not significantly affect the mechanical and heat build‐up properties of NR vulcanizates. POLYM. COMPOS., 37:1735–1743, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
A novel organomodified montmorillonite prepared by solid‐state method and its nanocomposites with polypropylene were studied. The interaction between modifying agent and montmorillonite was investigated by X‐ray diffraction (XRD) analysis, contact angle determination, and Fourier‐transform infrared spectroscopy. The results showed that the modifying agent behaves as an effective intercalating agent, enlarging the interlayer spacing of montmorillonite and making montmorillonite more hydrophobic. Polypropylene/solid‐state organomodified montmorillonite composites were prepared by melt‐mixing method. The dispersion of the silicates was investigated by XRD analysis and transmission electron microscopy. It was found that the nanocomposites are formed with solid‐state organomodified montmorillonite and polypropylene. The thermogravimetric analysis and differential scanning calorimetry results showed that the organoclay could enhance the thermal stability and decrease the relative crystallinity of polypropylene. Mechanical and rheological tests indicated that the organoclay improves the mechanical properties but has no obvious effect on rheological properties of polypropylene. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
Nanocomposite polyurethane (PU)–organoclay materials have been synthesized via in‐situ polymerization. The organoclay is first prepared by intercalation of tyramine into montmorillonite (MMT)‐clay through ion exchange process. The syntheses of polyurethane–organoclay hybrid films containing different ratios of clay were carried out by swelling the organoclay into diol and diamine followed by addition of diisocyanate and then cured. The nanocomposites with dispersed and exfoliated structure of MMT were obtained as evidenced by X‐ray diffraction and scanning electron microscope. X‐ray diffraction showed that there is no peak corresponding to d001 spacing in organoclay with the ratios up to 20 wt%. SEM images confirmed the dispersion of nanometer silicate layers in the polyurethane matrix. Also, it was found that the presence of organoclay leads to improvement in the mechanical properties. The tensile strength was increased with increasing the organoclay contents to 20 wt% by 221% in comparision to the PU with 0% organoclay. POLYM. COMPOS. 28:108–115, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
The research on polymer‐layered silicate nanocomposites is currently an expanding field of study because they often exhibit a wide range of improved properties over their unmodified starting polymers. Epoxy/organoclay nanocomposites have been prepared by intercalating epoxy into the organoclay montmorillonite. The intercalation and/or exfoliation of the clay within the nanocomposite were monitored using X‐ray diffraction and transmission electron microscopy. Diffusion was studied through epoxy samples containing up to 10 phr of organically treated montmorillonite following the gravity method. The water and sulfuric acid diffusion within the epoxy‐based nanocomposites were evaluated in terms of diffusivity, weight change and penetration depth of the sulfuric acid element S as function of immersion time and immersion temperature. An investigation of the resistance of epoxy nanocomposite to a corrosive environment by immersion into sulfuric acid at elevated temperature was performed. The effect of the degree of exfoliation of the clay on moisture barrier effect and corrosion resistance is specifically studied. The data has been compared to those obtained from the neat epoxy resin to evaluate the diffusion properties of the nanocomposites. It was found that the diffusion of water and that of acid do not obey Fick's law, and that the higher the organoclay content the higher weight change was obtained. The presence of the organoclay enhanced the diffusivity and delayed the penetration of the sulfuric acid. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
This study describes the microstructure and thermal and mechanical properties of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB/HV)–organoclay nanocomposites prepared by melt intercalation using Cloisite 30B, a monotallow bis‐hydroxyethyl ammonium‐modified montmorillonite clay. X‐ray diffractometry and transmission electron microscopy analyses clearly confirm that an intercalated microstructure is formed and finely distributed in the PHB/HV copolymer matrix because PHB/HV has a strong hydrogen bond interaction with the hydroxyl group in the organic modifier of Cloisite 30B. The nanodispersed organoclay also acts a nucleating agent, increasing the temperature and rate of crystallization of PHB/HV; therefore, the thermal stability and tensile properties of the organoclay‐based nanocomposites are enhanced. These results confirm that the organoclay nanocomposite greatly improves the material properties of PHB/HV. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 525–529, 2003  相似文献   

16.
In this study, polystyrene (PS)/montmorillonite nanocomposites were prepared by melt intercalation, in situ polymerization, and masterbatch methods. In the masterbatch method, as the first step, a high clay content composite of PS–organoclay (masterbatch) was prepared by in situ polymerization, and then the prepared masterbatch was diluted to desired compositions with commercial PS in a twin‐screw extruder. The structure and mechanical properties of the nanocomposites were examined. X‐ray diffraction (XRD) analysis showed that the d‐spacing of the in situ formed nanocomposites increased from 32.9 Å for the organoclay powder to 36.3 and 36.8 Å respectively in nanocomposites containing 0.73 and 1.6 wt% organoclay, indicating intercalation. However, the d‐spacing of the other prepared materials remained nearly unchanged when compared with pure organoclay powder. Thus, at these low clay contents, in situ formed nanocomposites showed the best improvement in mechanical properties including tensile, impact strength, and Young's modulus. In situ polymerization method did not prove to be efficient at high clay loadings in terms of intercalation and mechanical properties. At high clay loadings, the effects of the three methods in promoting mechanical properties were not significantly different from each other. POLYM. COMPOS., 27:249–255, 2006. © 2006 Society of Plastics Engineers  相似文献   

17.
Positive‐working aqueous base developable photosensitive polybenzoxazole (PBO) precursor/organoclay nanocomposites have been prepared through the addition of an organoclay to a PBO precursor. The organoclay was formed by a cation exchange reaction between a Na+‐montmorillonite clay and an ammonium salt of dodecylamine. The PBO precursor used in this study was a polyhydroxyamide that was prepared from a low‐temperature polymerization of 2′2′‐bis(3‐amino‐4‐hydroxyphenyl) hexafluoropropane and 4,4′‐oxydibenzoyl chloride with an inherent viscosity of 0.3 dL/g. The photosensitive resin/clay formulations were prepared from the precursor with 2,3,4‐tris(1‐oxo‐2‐diazonaphthoquinone‐5‐sulfonyloxy)‐benzophenone photosensitive compound and 3–5 wt % organoclay. The PBO precursor/clay was subsequently thermally cured to PBO/clay at 350°C. Both X‐ray diffraction and transmission electron microscope analyses showed that the organoclay was dispersed in the PBO matrix in a nanometer scale. The thermal expansion coefficient of PBO/clay film, which contained 5 wt % organoclay, was decreased 33% compared to the pure PBO film. The PBO/clay nanocomposite films also displayed higher thermal stability, glass transition temperature, and water resistance than the pure PBO film. The photosensitive PBO precursor/clay nanocomposite showed a line/space pattern with a resolution of 5 μm and its sensitivity and contrast were not affected by the organoclay. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2350–2356, 2005  相似文献   

18.
Organo‐montmorillonite was incorporated into model tire tread formulations through latex compounding methods, to evaluate its effects on elastomer reinforcement and dynamic properties. An intercalation structure was obtained by applying latex compounding method to prepare organoclay‐emulsion stryene butadiene (E‐SBR) masterbatches, for compounding with organoclay loading levels of 0–20 parts per hundred rubber (phr). Microstructure, curing properties and tire performance of the compounded rubber were investigated with the aid of X‐ray diffraction, rheometor and dynamic‐mechanical analysis, respectively. The results showed that organo‐montmorillonite filler provided effective reinforcement in the elastomer matrix, as indicated through mechanical and dynamic mechanical properties. Tread compounds using higher organoclay loadings displayed preferred ice traction, wet traction, and dry handling, but decreased winter traction and rolling resistance. Model compounds using 15 phr of organoclay loading levels were preferred for balanced physical and dynamic properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41521.  相似文献   

19.
Poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposites were prepared by solution intercalation method. The clay was organo‐modified with the intercalation agent cetylpyridinium chloride (CPC). Wide‐angle X‐ray diffraction (XRD) showed that the layers of MMT were intercalated by CPC. Four nanocomposites with organoclay contents of 1, 5, 10, and 15 wt % were prepared by solution blending. XRD showed that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay present. According to the results of differential scanning calorimetry (DSC) analysis, clay behaves as a nucleating agent and enhances the crystallization rate of PET. The maximum enhancement of crystallization rate for the nanocomposites was observed in those containing about 10 wt % organoclay within the studied range of 1–15 wt %. From thermogravimetric analysis (TGA), we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–15 wt % organoclay. These nanocomposites showed high levels of dispersion without agglomeration of particles at low organoclay content (5 wt %). An agglomerated structure did form in the PET matrix at 15 wt % organoclay. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 140–145, 2004  相似文献   

20.
Melamine‐modified montmorillonite (MA‐MMT) was prepared via cation exchange. The intercalation behavior was investigated by Fourier transform infrared spectrometer (FT‐IR), X‐ray photoelectron spectroscopy (XPS), and X‐ray diffraction (XRD). The results showed that the d‐spacing value increased from 1.25 nm for Na‐montmorillonite (Na+MMT) to 1.53 nm for MA‐MMT. Different kinds of montmorillonite combined with melamine pyrophosphate (MPP) were used to prepare flame‐retardant polyamide 6 (FR‐PA6). Flame retardance of FR‐PA6 samples was investigated by limiting oxygen index (LOI), UL‐94 vertical burning method, and cone calorimeter test. Morphology and component of char residues for FR‐PA6 were investigated by scanning electron microscope (SEM) and XPS. It was found that MA‐MMT/MPP system contributed both excellent flame retardance and anti‐dripping ability for PA6. MA‐MMT particles can fill flaws of char residues and strengthen the char layer, leading to form more intumescent char layer. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号