首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
K. Gommed  G. Grossman   《Solar Energy》2007,81(1):131-138
Growing demand for air conditioning in recent years has caused a significant increase in demand for primary energy resources. Solar-powered cooling is one of the environmentally-friendly techniques which may help alleviate the problem. A promising solar cooling method is through the use of a liquid desiccant system, where humidity is absorbed directly from the process air by direct contact with the desiccant. The desiccant is then regenerated, again in direct contact with an external air stream, by solar heat at relatively low temperatures. The liquid desiccant system has many potential advantages over other solar air conditioning systems and can provide a promising alternative to absorption or to solid desiccant systems.Earlier work by the authors included theoretical simulations and preliminary experiments on the key components of the liquid desiccant system. The objective of the present study has been to construct a prototype system based on the knowledge gained, to monitor its performance, identify problems and carry out preliminary design optimization. A 16 kWt system was installed at the Energy Engineering Center at the Technion, in the Mediterranean city of Haifa. The system comprises a dehumidifier and a regenerator with their associated components operating together to dehumidify the fresh (ambient) air supply to a group of offices on the top floor of the building. LiCl-water is employed as the working fluid. The system is coupled to a solar collector field and employs two methods of storage – hot water and desiccant solution in the regenerated state. The performance of the system was monitored for five summer months under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the calculated performance parameters.  相似文献   

3.
Liquid desiccant is energy efficient for dehumidification in air-conditioning systems. In this study, a novel dedicated outdoor air system (DOAS) adopting lithium chloride solution as liquid desiccant is proposed to process supply air. The DOAS mainly consists of a membrane-based total heat exchanger, a liquid dehumidifier, a regenerator and a dry cooling coil. It can realize independent temperature and humidity controls for supply air. Control strategies for the supply air dehumidification and cooling process as well as the desiccant solution regeneration process in the DOAS are developed and verified. The control performances of the proposed dedicated outdoor air system are investigated at different operation conditions by simulation tests. The results show that the DOAS is more suitable for hot and humid climates. The effects of the total heat exchanger on the performance of the DOAS are also evaluated. It can improve the system energy performance by 19.9–34.8%.  相似文献   

4.
Yutong Li  Lin Lu  Hongxing Yang 《Solar Energy》2010,84(12):2085-2095
In this article, a transient simulation model and the EnergyPlus were used to study the energy performance and economical feasibility for integrating a solar liquid desiccant dehumidification system with a conventional vapor compression air-conditioning system for the weather condition of Hong Kong. The vapor compression system capacity in the solar assisted air-conditioning system can be reduced to 19 kW from original 28 kW of a conventional air-conditioning system as a case study due to the solar desiccant cooling. The economical performance of the solar desiccant dehumidification system is compared with that of the conventional air-conditioning system. The results show that the energy saving potentials due to incorporation of the solar desiccant dehumidification system in a traditional air-conditioning system is significant for the hot wet weather in Hong Kong due to higher COP resulted from higher supply chilled water temperature from chiller plants. The annual operation energy savings for the hybrid system is 6760 kWh and the payback period of the hybrid system is around 7 years. The study shows that the solar assisted air-conditioning is a viable technology for utilizations in subtropical areas.  相似文献   

5.
The performances of two natural gas small‐scale trigeneration plants are dealt with in the paper. The two plants are part of a new cogeneration and trigeneration system laboratory at the Politecnico di Torino (Turin, Italy), which will be set up and exploited for scientific and technical purposes. The first plant has 126/220/210 kW electrical, heating and cooling capacities, respectively, and it is characterized by an innovative internal combustion engine (ICE) that has been coupled to a liquid LiCl–water desiccant cooling system. The other plant has 100/145/98 kW electrical, heating and cooling capacities and is composed of a micro gas turbine, coupled to a LiBr–Water absorption chiller. The aim of the paper was comparing the performances of the two plants from an energetic and economic point of view; the Primary Energy Savings are calculated for both installations through a commonly accepted methodology proposed by the European Union, and through another methodology, reported in literature, which seems more suitable to describe the energetic performances of trigeneration plants. The savings calculated with this second procedure result to be lower than those of the European Union methodology; moreover, the ICE installation always denotes higher performances with respect to the microturbine. From the economic point of view, it is evident that a fuel tax reduction for high‐efficiency cogeneration plants is an essential contribution for the support and development of these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
蓄能型液体除湿蒸发冷却系统中除湿性能的实验研究   总被引:4,自引:0,他引:4  
提出了一种新型空调系统——液体除湿冷却空调系统的设计方案并搭建一功率为3kW的实验台,考虑到除湿过程和再生过程是该系统性能优良的决定性环节,设计加工了水冷型波纹板降膜式结构的除湿器和以丝网填料作为内部填料的再生器。在此实验装置上对系统的除湿过程以及其蓄能能力特性进行了实验研究,得出影响该系统除湿能力、蓄能能力等方面的主要因素,为系统的优化设计和运行提供依据。  相似文献   

7.
Air conditioning system based on liquid desiccant has been recognized as an efficient independent air humidity control HVAC system. To improve thermal coefficient of performance, a novel two-stage liquid desiccant dehumidification system assisted by calcium chloride (CaCl2) solution is developed through exergy analysis based on the second thermodynamic law. Compared with the basic liquid desiccant dehumidification system, the proposed system is improved by two ways, i.e. increasing the concentration variance and the pre-dehumidification of CaCl2. The exergy loss in the desiccant–desiccant heat recovery process can be significantly reduced by increasing desiccant concentration variance between strong desiccant solution after regeneration and weak desiccant solution after dehumidification. Meanwhile, the pre-dehumidification of CaCl2 solution can reduce the irreversibility in the regeneration/dehumidification process. Compared to the basic system, the thermal coefficient performance and exergy efficiency of the proposed system are increased from 0.24 to 0.73 and from 6.8% to 23.0%, respectively, under the given conditions. Useful energy storage capacity of CaCl2 solution and LiCl solution at concentration of 40% reach 237.8 and 395.1 MJ/m3, respectively. The effects of desiccant regeneration temperature, air mass flux, desiccant mass flux, etc., on the performance of the proposed system are also analyzed.  相似文献   

8.
In a trigeneration plant, the thermal energy recovered from the prime mover is exploited to produce a cooling effect. Although this possibility allows the working hours of the plant to be extended over the heating period, providing summer air conditioning through thermally activated technologies, it is rather difficult to find in the literature experimental data on trigeneration plants operation, and the availability of performance characteristics at off‐design conditions is anyway limited. The paper has the aim of showing the experimental data of a real trigeneration system installed at the Politecnico di Torino (Turin, Italy), composed of a natural gas 100 kWel microturbine coupled to a liquid desiccant system. The data are presented for both cogeneration and trigeneration configurations, and for full and partial load operations. An energetic and economic performance assessment at rated power operation is presented, and compared with the partial load operation strategy. The primary energy savings are calculated through a widely accepted methodology, proposed by the European Union, and through another methodology, reported in literature, which seems to the Authors more suitable to describe the energetic performances of trigeneration plants. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Humidity and indoor moist surrounding affect air cleanliness and protects harmful microorganisms when relative humidity is above 70%. In humid climates, the humidity issues are a major contributor to energy inefficiency in HVAC devices. The use of liquid desiccant dehumidification systems of supply air is a viable alternative to reduce the latent heat load on the HVAC system and improve efficiency. Thermal energy, at a temperature as low as 40–50°C, required for the operation of a liquid desiccant hybrid air conditioner can be efficiently obtained using a flat-plate solar collector. In this work a model of a solar-operated liquid desiccant system (using calcium Chloride) for air dehumidification is developed. The system utilizes packed beds of counter flow between an air stream and a solution of liquid desiccant for air dehumidification and solution regeneration. The desiccant system model is integrated with a solar heat source for performance evaluation at a wide range of recorded ambient conditions for Beirut city. Standard mass and energy balances are performed on the various components of the system and a computer simulation program is developed for the integrated system analysis. The desiccant system of the current study replaces a 3 TR (10.56 kW) vapour compression unit for a typical house as low latent load application, and is part of a hybrid desiccant–vapour compression system for a high latent load application, namely a small restaurant with an estimated cooling load of 11.39 TR (40 kW), including reheat. The relevant parameters of the desiccant system are optimized at peak load, and it is found out that there is an important energy saving if the ratio of the air flow rate in the regenerator to that in the dehumidifier is about 0.3 to 0.4. The COP of the desiccant unit is 0.41 for the house, and 0.45 for the restaurant. The size of the vapor compression unit of the restaurant is reduced to 8 TR when supplemented by a desiccant system. The performance is studied of the desiccant system integrated with a solar collector system and an auxiliary natural gas heater to heat the regenerator. The transient simulation of the solar desiccant system is performed for the entire cooling season. The solar fraction for the house is equal to 0.25, 0.47, and 0.68 for a collector area of 28.72, 57.44, and 86.16 m2, respectively. The solar fraction for the restaurant is 0.19, 0.38, and 0.54, for the same collector areas. The life cycle savings for the house run solely on desiccant system were positive only if natural gas is available at a cheap price. For the restaurant, the economic benefit of the desiccant system is positive, because the need for reheat in the vapor compression system is eliminated. For a gas price of 0.5638 $/kg, the payback period for the restaurant turned out to be immediate if the energy is supplied solely by natural gas, and 11 years if an 86.16 m2 solar collector is implemented to reduce the fuel consumption. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an experimental study has been conducted on the hybrid desiccant cooling system by removing the latent heat and sensible heat of air separately by mixing it with the desiccant solution in a counter flow manner. This makes air totally dry and thus saves the energy to cool the air in the refrigeration system. The desiccant chosen here is the aqueous solution of calcium chloride. The packed bed inside the absorber as well as the regenerator consists of a polypropylene cascade ring for the efficient mixing of air and desiccant solution. The effects of various parameters such as desiccant inlet temperature, air inlet temperature, mass flow rate of air and desiccant solution have been studied to investigate the performance of the system. Comparing the results with previous studies, a fair agreement has been reported.  相似文献   

11.
The developments on liquid desiccant air-conditioning systems were illustrated and summarized in this paper. In order to obtain a better dehumidification (or humidification) performance, liquid desiccant should be cooled (or heated) rather than air. Two fundamental modules were proposed, including basic spray module with extra heat exchanger and total heat recovery device, which could be combined to set up various kinds of liquid desiccant air processors. The operating principle of heat pump-driven outdoor air processor as well as heat-driven outdoor air processor was analyzed. The COPair of the heat pump (or power)-driven outdoor air processor could be as high as 5.0 both in summer and in winter operating conditions. The COPair of the hot water-driven processor (65°C–80°C) was 1.19 and 0.93, respectively, using evaporative indoor exhaust air or cooling water to cool the dehumidification process. The liquid desiccant air processor-based temperature and humidity-independent control air-conditioning system could save 20%–30% operating energy compared with the conventional air-conditioning system.  相似文献   

12.
This article presents a research study on the process analysis of adiabatic liquid desiccant dehumidification/regeneration with slug flow assumptions. A controlling equation is developed for the quasi-equilibrium processes where the two fluid streams are in contact in quasi-equilibrium conditions. Results from this equation with numerical integration for the solution are presented as process curves on a psychrometric chart. Two of these curves are found to be characteristic of two typical types of adiabatic dehumidification/regeneration processes: one featured with small enthalpy change of air and low mass flow of solution (type-1) and the other with small concentration change and high mass flow of solution (type-2). These two types of process curves are thus named as characteristic process curves. Numerical simulations of one-dimensional heat and mass transfer model under practical conditions were also performed. With special inlet conditions and approximately balanced heat and mass capacity conditions, the loci of states for the two fluid streams will still proceed approximately along the same characteristic process curves. Under other inlet conditions, the characteristic process curves still function as asymptotic limits for the real processes. Thus, the research presented in this article provides an in-depth understanding of the complicated heat and mass transfer processes and also a theoretical basis for further development of simplified and precise enough algorithm of heat and mass transfer calculations.  相似文献   

13.
Dehumidifier and regenerator are the most significant components in liquid desiccant air-conditioning systems, in which air directly contacts liquid desiccant and heat and mass transfer process occurs between the two fluids. Heat transfer process and mass transfer process within dehumidifier/regenerator influence each other and should not be separately considered. Based on the previous reachable handling region analysis, a zonal method is proposed in present study. Four zones are divided in the psychrometric chart according to the relative position of inlet air to inlet desiccant including two dehumidification zones, zone A and zone D, and two regeneration zones, zone B and zone C. In zone A or C, mass transfer is key process, and counter-flow configuration has the best mass transfer performance and parallel-flow is the poorest in the same operating conditions. In zone B or D, heat transfer is governing process, parallel-flow has the best mass transfer performance and counter-flow is the poorest. In order to obtain better mass transfer performance, liquid desiccant should be cooled (in zone A) rather than air (in zone D) in dehumidifier, and liquid desiccant should be heated (in zone C) rather than air (in zone B) in regenerator. The divided zones and the corresponding zonal properties will be helpful to the design and optimization of dehumidifiers and regenerators.  相似文献   

14.
The current increase of the energy consumption of buildings requires new approaches to solve economic, environmental and regulatory issues. Exergy methods are thermodynamic tools searching for sources of inefficiencies in energy conversion systems that the current energy techniques may not identify. Desiccant cooling systems (DCS) are equipments applied to dehumidifying and cooling air streams, which may provide reductions of primary energy demand relatively to conventional air‐conditioning units. In this study, a detailed thermodynamic analysis of open‐cycle DCS is presented. It aims to assess the overall energy and exergy performance of the plant and identify its most inefficient sub‐components, associated to higher sources of irreversibilities. The main limitations of the energy methods are highlighted, and the opportunities given by exergy approach for improving the system performance are properly identified. As case study, using a pre‐calibrated TRNSYS model, the overall energy and exergy efficiency of the plant were found as 32.2% and 11.8%, respectively, for a summer week in Mediterranean climate. The exergy efficiency defect identified the boiler (69.0%) and the chiller (12.3%) as the most inefficient components of the plant, so their replacement by high efficient systems is the most rational approach for improving its performance. As alternative heating system to the boiler, a set of different technologies and integration of renewables were proposed and evaluated applying the indicators: primary energy ratio (PER) and exergy efficiency. The heating system fuelled by wood was found as having the best primary energy performance (PER = 109.6%), although the related exergy efficiency is only 11.4%. The highest exergy performance option corresponds to heat pump technology with coefficient of performance (COP) = 4, having a PER of 50.6% and exergy efficiency of 28.2%. Additionally, the parametric analyses conducted for different operating conditions indicate that the overall irreversibility rate increases moderately for larger cooling effects and more significant for higher dehumidification rates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
T.S. Ge 《Solar Energy》2010,84(2):157-159
In this study, a two-stage solar driven rotary desiccant cooling (TSRDC) system with novel configuration and newly developed silica gel-haloid composite desiccant is proposed aiming to reduce regeneration temperature and to achieve high energy performance. Simulated results show that there also exists an optimal rotation speed for TSRDC system. Compared with one-stage system, it is found that for the similar supply air state, the required regeneration temperature of TSRDC system is lower and for the same regeneration temperature, the cooling capacity of TSRDC is bigger.  相似文献   

16.
P. Gandhidasan  M.A. Mohandes 《Energy》2011,36(2):1180-1186
The dehumidification process involves simultaneous heat and mass transfer and reliable transfer coefficients are required in order to analyze the system. This has been proved to be difficult and many assumptions are made to simplify the analysis. The present research proposes the use of ANN based model in order to simulate the relationship between inlet and outlet parameters of the dehumidifier. For the analysis, randomly packed dehumidifier with lithium chloride as the liquid desiccant is chosen. A multilayer ANN is used to investigate the performance of dehumidifier. For training ANN models, data is obtained from analytical equations. Eight parameters are used as inputs to the ANN, namely: air and desiccant flow rates, air and desiccant inlet temperatures, air inlet humidity, desiccant inlet concentration, dimensionless temperature ratio, and inlet temperature of the cooling water. The outputs of the ANN are the water condensation rate and the outlet desiccant concentration as well as its temperature. ANN predictions for these parameters are validated well with experimental values available in the literature with R2 value in the range of 0.9251-0.9660. This study shows that liquid desiccant dehumidification system can be alternatively modeled using ANN with a reasonable degree of accuracy.  相似文献   

17.
In this experimental investigation, a packed bed column suitable for 5‐ton hybrid cooling system has been designed to study the absorption of water vapour from moist air by contact with aqueous solutions of calcium chloride. The packing material used in the study was two elements of the BXPEP structured packing and the height of the each element was 17 cm. This packed bed dehumidifier handles desiccant flow rates from 10 to 32 l/min. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (calcium chloride) and air in a gauze‐type structured packing dehumidifier. The effects of different independent variables such as air inlet absolute humidity, desiccant inlet temperature, flow rate and its concentration on the performance of the dehumidifier have been investigated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid system consisting of vapour compression unit, a liquid desiccant system, and a flat solar hot water collector were designed, fabricated and tested. This combination allowed for a separate control of humidity and temperature without energy penalty. Various packing heights of the absorber component were tested to determine the optimal performance of the combined unit. A 1000 mm packing height with cross-sectional area of 600×600 mm, proved to be the best height that gives promising improvements in the coefficient of performance of the vapour compression unit.  相似文献   

19.
Liquid desiccant cooling system (LDCS) is an (a novel) air-conditioning system with good energy saving potential. Regenerator is the power centre for LDCS. Currently, the regeneration process is always fuelled by thermal energy. Nevertheless, this regeneration pattern has some disadvantages in that its performance will become poor when the surrounding atmosphere is of high humidity, and the heat provided for regeneration will be unfavourable to the following dehumidification process. To ameliorate that, a new regeneration method is proposed in this paper: a membrane regenerator is employed to regenerate the liquid desiccant in an electrodialysis way; while solar photovoltaic generator is adopted to supply electric power for this process. Analysis has been made about this new regeneration method and the result reveals: this new manner achieves good stability with the immunity against the adverse impact from the outside high humidity; its performance is much higher than that of the thermal regeneration manner while putting aside the low efficiency of the photovoltaic system. Besides, purified water can be obtained in company with the regeneration process.  相似文献   

20.
Liquid desiccant cooling system (LDCS) is a novel air-conditioning system with good energy saving potential. However, the present LDCS has a poor performance, mainly because the conventional thermal regeneration method wastes too much energy during the regeneration process. To improve that, photovoltaic-electrodialysis (PV-ED) regeneration method is introduced: it has a higher performance by using solar photovoltaic panels to drive an electrodialysis regeneration process. To further explore the PV-ED method, both single-stage and double-stage photovoltaic-electrodialysis regeneration systems are presented in this paper. Analysis is made on these two systems and some influential factors are investigated. It reveals that the concentration difference between the desiccant solution before and after regeneration has a strong impact on system performance. Moreover, comparison is conducted between the single-stage and the double-stage systems, the results show that the double-stage system is more energy-efficient and it can save more than 50% energy under optimized working conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号