首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A cheap acrylic AB* monomer, 2‐(2‐chloroacetyloxy)‐isopropyl acrylate (CAIPA), was prepared from 2‐hydroxyisopropyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self‐condensing vinyl polymerization by atom transfer radical polymerization (ATRP), a “living”/controlled radical polymerization, has yielded hyperbranched polymers. All the polymerization products were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR). CAIPA exhibited distinctive polymerization behavior that is similar to a classical step‐growth polymerization in the relationship of molecular weight to polymerization time, especially during the initial stage of the polymerization. However, a significant amount of monomer remained present throughout the polymerization, which is consistent with typical chain polymerization. Also, if a much longer polymerization time was used, the polymer became gel. As a result of the unequal reactivity of group A* and B*, the polymerization is different from an ideal self‐condensing vinyl polymerization: the branch structures of polymers prepared depend dramatically on the ratio of 2,2'‐bipyridyl to CAIPA. Hyperbranched polymers exhibit improved solubility in organic solvent, however, they have lower thermal stability than their linear analogs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2114–2123, 2002  相似文献   

2.
The self‐condensing vinyl polymerization of styrene and an inimer formed in situ by atom transfer radical addition from divinylbenzene and 2‐bromoisobutyl‐tert‐butyrate using atom transfer radical polymerization technique was studied. To study the polymerization mechanism and achieve high molecular weight polymer in a high polymer yield, the polymerization was carried out in bulk at 80°C. Proton nuclear magnetic resonance (1H‐NMR) spectroscopy and gel permeation chromatography (GPC) coupled with multiangle laser light scattering (MALLS) were used to monitor the polymerization process and characterize the solid polymers. It is proved that the polymerization shows a “living” polymerization behavior and the crosslinking reaction has been restrained effectively due to the introduction of styrene. Polymers with high molecular weight (Mw.MALLS > 105) can be prepared in high yield (near 80%). Comparison of the apparent molecular weights measured by GPC with the absolute values measured by MALLS indicates the existence of branched structures in the prepared polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Durairaj Baskaran 《Polymer》2003,44(8):2213-2220
Hyperbranched polymers were synthesized using anionic self-condensing vinyl polymerization (ASCVP) by forming ‘inimer’ (initiator within a monomer) in situ from divinylbenzene (DVB) and 1,3-diisopropenylbenzene (DIPB) using anionic initiators in THF at −40 °C. The reaction of equimolar amounts of DVB and nBuLi results in the formation of hyperbranched poly(divinylbenzene) through self-condensing vinyl polymerization (SCVP). The hyperbranched polymers were invariably contaminated with small amount of gel (<15%). No gelation was observed when using DIBP with anionic initiators. The presence of monomer-polymer equilibrium in the SCVP of DIPB restricts the growth of hyperbranched poly(DIPB). The inimer synthesized from DIPB at 35 °C undergoes intermolecular self-condensation to different extent depending on the nature of anionic initiator at −40 °C. The molecular weight of the hyperbranched polymers was higher when DPHLi was used as initiator. A small amount of styrene ([styrene]/[Li+]=1) was used to promote the chain growth by inducing cross-over reaction with styrene, and subsequent reaction of styryl anion with isopropenyl groups of inimer/hyperbranched oligomer. The hyperbranched polymers were soluble in organic solvents and exhibited broad molecular weight distribution (2<Mw/Mn<17).  相似文献   

4.
The homopolymerization of divinylbenzene (DVB) as an excellent crosslinker (0.20 mol/L) with dimethyl 2,2′‐azobisisobutyrate (MAIB) proceeded homogeneously without any gelation at 80°C in benzene when the MAIB concentrations as high as 0.30–0.50 mol/L were used, yielding soluble polymers. In the polymerization at the concentrations of [DVB] = 0.20 mol/L and [MAIB] = 0.50 mol/L, the polymer yield increased with time and leveled off over 90 min. The molecular weight and molecular weight distribution increased with polymer yield. The vinyl groups of DVB were observed to be almost completely consumed in about 80 min, by FT near‐IR spectroscopic analysis. The homogeneous polymerization system involved ESR‐observable polymer radical, the concentration of which increased with time up to 3.4 × 10?5 mol/L. The polymer formed in the polymerization for 2 h consisted of 46 mol % of DVB unit and 54 mol % of the methoxycarbonylpropyl group as MAIB fragment, indicating that an initiator‐fragment incorporation radical polymerization proceeds in the present polymerization. The polymer was soluble in benzene, tetrahydrofuran, ethyl acetate, chloroform, acetone, and N,N‐dimethylformamide, while it was insoluble in n‐hexane, acetonitrile, dimethyl sulfoxide, methanol, and water. The results of the multiangle laser light scattering and viscometric measurements revealed that the individual polymer molecules were formed as hyperbranched polymer nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 664–670, 2006  相似文献   

5.
Molecularly imprinted polymer microspheres were prepared by precipitation polymerization using a sacrificial covalent bond. In the present model, cholesteryl (4‐vinyl)phenyl carbonate was used as a template monomer. The imprinted microspheres were prepared using ethylene glycol dimethacrylate (EDMA) and divinylbenzene (DVB) as crosslinker. The base‐labile carbonate ester bond was easily hydrolyzed to leave imprinted cavities in the resulting polymers. Radioligand binding analysis, elemental analysis, and scanning electron microscopy were used to characterize the imprinted materials. Imprinted microspheres prepared from DVB crosslinker had larger and more defined spherical shape, and displayed better imprinting effect than did the EDMA‐based microparticles. For comparison, imprinted bulk polymers were also prepared in the same reaction solvent as that used in precipitation polymerization. Elemental analysis results indicated that imprinted microspheres contained more template monomer units than bulk materials. The efficiency of template removal by hydrolysis treatment for microspheres was also higher than that for bulk polymers. For DVB‐based polymers, imprinted microspheres displayed higher specific cholesterol uptake than did the corresponding bulk polymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1390–1398, 2006  相似文献   

6.
In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a ‘hyperlinker’ to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.  相似文献   

7.
以α-溴代异丁酸叔丁酯为引发剂,二乙烯苯为支化单体,苯乙烯为共聚单体,经原子转移自由基聚合原位生成自引发单体合成支化共聚物。用核磁共振法、凝胶渗透色谱法、三角激光散射法分别对聚合过程和聚合物进行了表征。结果表明:由于苯乙烯的引入,反应体系的交联得到了很好的控制,所得聚合物为支化结构。  相似文献   

8.
Novel hyperbranched copolymers were prepared by the atom transfer radical copolymerization of N-(4-α-bromobutyryloxy phenyl) maleimide (BBPMI) with styrene in 1-methyl-2-pyrrolidone (NMP) using the complex of CuBr/2,2′-bipyridine as catalyst. The copolymerization behavior was investigated by comparison of the conversion of double bond of BBPMI determined by 1H NMR with that of styrene. The hyperbranched structure of resulting copolymers was verified by gel permeation chromatography (GPC) coupled with multi-angle laser light scattering (MALLS). The influences of dosage of catalyst and monomer ratio on the polymerization rate and structure of the resulting polymers were also investigated. The glass transition temperature of the resulting hyperbranched copolymer increases with increasing mole fraction of BBPMI, fBBPMI. The resulting copolymers exhibit improved solubility in organic solvents; however, they show lower thermal stabilities than their linear analogues.  相似文献   

9.
The chelation behavior of poly(2‐hydroxy‐4‐acryloyloxybenzophenone) [poly(2H4ABP) or polymer I ] obtained through the free‐radical polymerization of 2‐hydroxy‐4‐acryloyloxybenzophenone monomer and for crosslinked polymers prepared from the monomer and known amounts of the crosslinker divinylbenzene (DVB) [4 mol % of DVB for polymer II, 8 mol % of DVB for polymer III, and 16 mol 16% of DVB for polymer IV ] toward the divalent metal ions Cu2+, Ni2+, Zn2+, and Pb2+ in aqueous solution was studied by a batch equilibration technique as a function of contact time and pH. The effect of the crosslinker, DVB, was also studied. The metal‐ion uptake of the polymers was determined with atomic absorption spectroscopy, and the highest uptake was achieved at pH 7.0 for polymers I, II, III, and IV. The selectivity and binding capacity of the resins toward the investigated divalent metal ions are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
Poly(styrene‐co‐divinylbenzene) microspheres with size ranging from 1.6 to 1.8 μm were prepared in acetic acid by precipitation polymerization. The particle size and particle size distribution were determined by laser diffraction particle size analyzer, and the morphology of the particles was observed with scanning electron microscope. Besides, effects of various polymerization parameters such as initiator and total monomer concentration, divinylbenzene (DVB) content, polymerization time and polymerization temperature on the morphology and particle size were investigated in this article. In addition, the yield of microspheres increased with the increasing total monomer concentration, initiator loading, DVB concentration and polymerization time. In addition, the optimum polymerization conditions for synthesis of monodisperse crosslinked poly(styrene‐co‐divinylbenzene) microspheres by precipitation polymerization in acetic acid were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
间歇式乳液聚合法制备超支化聚丙烯酸丁酯   总被引:1,自引:0,他引:1  
以丙烯酸丁酯为单体,二乙烯基苯为支化剂,十二硫醇为链转移剂,通过间歇式乳液聚合法成功制备了一系列高转化率的聚丙烯酸丁酯超支化聚合物。通过核磁共振对其结构进行了表征,同时还对聚合物乳液粒径及其分布,超支化聚合物的溶解性、支化度、相对分子质量及相对分子质量分布进行了研究。结果表明:超支化聚合物分子结构中含有丙烯酸丁酯、二乙烯基苯和十二硫醇;聚合物乳液粒径较小,粒径分布较窄;超支化聚合物在有机溶剂中具有良好的溶解性;随着支化剂用量的增加,聚合物支化度增加,相对分子质量降低,相对分子质量分布变窄;随着链转移剂用量的增加,聚合物支化度增加,相对分子质量分布变窄。  相似文献   

12.
Poly(ethylene oxide) (PEO) star microgels with a cross‐linked polystyrene core were successfully prepared by reversible addition‐fragmentation transfer polymerization of styrene (St) and divinylbenzene (DVB) with dithiobenzoate‐terminated PEO monomethyl ether (DTB‐MPEO) as macro chain transfer agent in mixtures of ethanol and tetrahydrofuran (THF). The formation of star polymers was affected by polymerization time, solvents and St:DVB:DTB‐MPEO molar ratios. Narrow polydispersed star microgels with high molecular weight were obtained under appropriate polymerization conditions. Transmission electron micrographs suggest that PEO star polymers could form nano‐size spherical micelles in mixtures of water and THF, which further demonstrates the amphiphilic nature of the star polymers. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Gong Haidan 《Polymer》2008,49(19):4101-4108
Branching atom transfer radical polymerization (ATRP) of styrene and acrylonitrile was attempted in the presence of divinylbenzene targeting toward soluble branched copolymer. The kinetics and the development of branching with monomer conversion were studied in detail. Gas chromatography (GC), gel permeation chromatography (GPC) coupled with multi-angle laser light scattering (MALLS), proton nuclear magnetic resonance (1H NMR) spectroscopy and intrinsic viscosity determination were used to monitor the polymerization process and characterize the obtained copolymer. Analysis of conversion of reactants, the growth manner of molecular weight with monomer conversion and GPC traces proved that the primary chains with low polydispersity formed mainly at the early stage and then were linked in a statistical manner to start the branching at the middle or late stage. The more the branching agent was used, the earlier the branching occurred, and too much higher level of branching agent resulted in gelation. For the selected ratio of [t-BBiB]/[DVB]/[St]/[AN] = 1/0.9/15/15, with monomer conversion less than 40%, primary chains with low polydispersity formed from the polymerization of St, AN and DVB, and only a part of the primary chains contained pendent vinyl group. When monomer conversion was up to 40%, the pendent vinyl groups participated in polymerization, resulting in the linking of the primary chains statistically to start the branching. The branching became significant at monomer conversion up to 50%, giving rise to a steep increase in molecular weight and width in molecular weight distribution. As the polymerization proceeded, the polymer composition gradually approached the feed composition, identifying the obtained branched copolymer provided some gradients are in its primary chains. Finally, branched copolymer bearing about six primary chains was prepared at monomer conversion near to 80%, its absolute weight average molecular weight was about 8.87 × 104.  相似文献   

14.
A series of uniform, macroporous particles with different surface chemistries were prepared with different acrylic comonomers [methyl methacrylate (MMA), butyl methacrylate (BMA), epoxypropyl methacrylate (EPMA), 2‐hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA)] with styrene–divinylbenzene (S–DVB) in a multistep seeded polymerization. In the synthesis, uniform polystyrene seed particles 6.2 μm in size were swollen first with a low molecular weight organic agent and then with a monomer phase including an S–DVB mixture and a relatively polar acrylic monomer. Final macroporous particles approximately 10 μm in size were obtained by the repolymerization of the monomer phase in the swollen seed particles. Surface and bulk morphologies were investigated with scanning and transmission electron microscopy, respectively. Although highly porous particles could be achieved with relatively hydrophobic monomers such as styrene, BMA, MMA, and EPMA, the use of hydrophilic monomers such as HEMA and MAA led to the synthesis of uniform particles with lower macroporosity. A comparison of Fourier transform infrared and Fourier transform infrared/diffuse reflectance spectroscopy spectra indicated that the concentration of polar acrylic monomer on the surface was higher than in the bulk structure. The nonspecific protein adsorption behavior of uniform, macroporous particles was investigated with albumin as a model protein. The highest nonspecific albumin adsorption was observed with plain poly(styrene‐co‐divinylbenzene) [poly(S–DVB)] particles. The particles produced with MMA and EPMA also exhibited albumin adsorption capacities very close to that of plain poly(S–DVB). Reasonably low nonspecific albumin adsorption was observed with the particles produced in the presence of MAA, HEMA, and BMA. Poly(S–DVB) particles functionalized with poly(vinyl alcohol) provided nearly zero nonspecific albumin adsorption. For nonspecific albumin binding onto the particles via a physical adsorption mechanism, desorption ratios higher than 80% could be achieved. The desorption ratio with the EPMA‐carrying particles was only 5% because the albumin adsorption onto EPMA‐carrying particles occurred predominantly with covalent‐bond formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 414–429, 2002; DOI 10.1002/app.10412  相似文献   

15.
A series of star‐shaped poly(2‐ethyl‐2‐oxazoline)s was prepared by cationic polymerization. The polymerization was initiated by dipentaerythrityl hexakis(4‐nitrobenzene sulfonate) and a tosylated hyperbranched polymer of glycidol. The polymerization proceeded in a controlled manner. The star structure of the products was determined by nuclear magnetic resonance. The molar mass distributions that were measured by gel permeation chromatography with multiangle laser light scattering were narrow, and the experimental values of the molar masses were close to those predicted. The very compact structure of the polymers obtained (compared with the linear counterparts) confirmed the star formation. The star poly(2‐ethyl‐2‐oxazoline)s show a phase transition temperature in the range 62–75 °C. Comparison of this phase transition temperature with that of the linear poly(2‐ethyl‐2‐oxazoline)s with the same molar masses indicates the influence of molar mass and topological structure of the macromolecule on temperature behavior. The prepared copolymers are spherical, which might be useful for the controlled transport and release of active compounds. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
设计并合成新型含被保护巯基的苯乙烯型AB单体,并以其为支化单体,甲基丙烯酸-β-羟乙酯(HEMA)为聚合主单体,DMSO为聚合溶剂,AIBN为引发剂,自由基聚合法制备可溶于水的超支化聚甲基丙烯酸-β-羟乙酯(PHEMA),同时建立一种新型超支化聚合法——巯基链转移超支化聚合法。用凝胶渗透色谱、1HNMR、DSC等对AB支化单体、PHEMA进行一系列结构和性能表征。实验结果表明,随着AB支化单体加入量的增加,聚合物的重均分子量Mw逐渐增加,而其Tg则呈下降趋势,在水中溶解度增加,说明聚合物发生超支化。  相似文献   

17.
Copper‐mediated atom transfer radical polymerization (ATRP) is versatile for living polymerizations of a wide range of monomers, but ATRP of vinyl acetate (VAc) remains challenging due to the low homolytic cleavage activity of the carbon‐halide bond of the dormant poly(vinyl acetate) (PVAc) chains and the high reactivity of growing PVAc radicals. Therefore, all the reported highly active copper‐based catalysts are inactive in ATRP of VAc. Herein, we report the first copper‐catalyst mediated ATRP of VAc using CuBr/2,2′:6′,2″‐terpyridine (tPy) or CuCl/tPy as catalysts. The polymerization was a first order reaction with respect to the monomer concentration. The molecular weights of the resulting PVAc linearly increased with the VAc conversion. The living character was further proven by self‐chain extension of PVAc. Using polystyrene (PS) as a macroinitiator, a well‐defined diblock copolymer PS‐b‐PVAc was prepared. Hydrolysis of the PS‐b‐PVAc produced a PS‐b‐poly(vinyl alcohol) amphiphilic diblock copolymer. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

18.
The feasibility of preparing cholesterol‐imprinted polymers by aqueous suspension polymerization was investigated by the preparation of ethyleneglycol dimethacrylate and divinylbenzene‐based beads imprinted using cholesteryl(4‐vinyl)phenyl carbonate as the template. A low volatility porogen to replace a 4:1 hexane/toluene mixture was selected on the basis of solubility parameters and consisted of dioctyl phthalate/n‐decane 77:23 v/v. Beads were prepared using a range of porogen contents with the best results obtained at 5.5–6.5 mL /5 g of monomer. Uptake of cholesterol by suspension polymers was broadly similar to that of the corresponding “bulk” polymers, but suffered from higher nonspecific binding. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1841–1850, 2000  相似文献   

19.
以二乙烯基苯(DVB)为单体,偶氮二异丁腈(AIBN)为引发剂,乙腈为溶剂,用沉淀聚合法合成了高交联度的聚合物微球。讨论了反应时间、反应温度、转动速率、单体浓度以及引发剂浓度对聚合物微球粒径及粒径分布的影响,并用扫描电子显微镜(SEM)进行了表征。  相似文献   

20.
Guoliang Li  Feng Bai 《Polymer》2007,48(11):3074-3081
Poly(divinylbenzene) (PDVB) hollow microspheres with pyridyl group located on their interior surface were prepared by a facile route with the aid of the vinyl groups on the surface of poly(methacrylic acid) (PMAA) microspheres, which were incorporated through the hydrogen-bonding interaction between the carboxylic acid group and pyridyl group of 4-vinylpyridine (VPy). Poly(methacrylic acid)@polydivinylbenzene (PMAA@PDVB) core-shell structure microspheres with PMAA as core and PDVB as shell were synthesized by a two-stage distillation-precipitation polymerization technique through the capture of the DVB monomer from solution of the reactive vinyl groups on pyridyl-functionalized PMAA microspheres based on a seeded-nucleation mechanism during the second-stage polymerization. The PDVB hollow microspheres with different shell thicknesses were developed after the PMAA core particles were removed by selective dissolution under basic condition in ethanol, during which the pyridyl group was left on the interior surface of the shell layer in PDVB hollow microspheres. The resultant core-shell and hollow microspheres were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectra (FT-IR) and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号