首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core‐shell type carboxylated particles form a flocculated structure in aqueous suspension with neutralization of carboxyl groups. Rheological behaviors of the suspension have been studied at various temperatures, and microstructures of the suspension have been discussed from the rheological behaviors and SAXS measurements. At 25°C, G′ is larger than G″ in all ω regions, and G′ is almost independent of ω, and the diffraction peak is detected by SAXS. These results mean that a three‐dimensional network of interconnected lattice‐like flocculated structure is formed. With increasing temperature, ω dependency of G′ becomes stronger and distance of the particles of the structure does not changed. These mean the network linkage is disrupted partially by thermal motion, and the interconnected lattice‐like flocculated structure changes to an isolated lattice‐like one with increasing temperature. With increasing the degree of neutralization, an isolated structure changes to an interconnected three‐dimensional structure decreasing the thermal motion just like decreasing temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1627–1633, 2001  相似文献   

2.
We have investigated the effects of hydrophobic interactions on the rheological behavior and microstructure of suspension of carboxylated core‐shell latex particles with changing hydrophobicity of shell polymer and suspending medium. The carboxylated core‐shell latex particles formed lattice‐like microstructures in aqueous suspension with dissociation of carboxyl groups. With increasing hydrophobicity of the shell polymer, the interparticle distance ξ in the microstructure decreased. However, ξ increased with increasing hydrophobicity of the suspending medium. The effect of hydrophobic interaction on ξ was explained by the steric stabilization theory for particles with grafted polymer on the surface. As the carboxylated core‐shell latex particles overlapped each other in the microstructure, an attractive force was generated between the particles in aqueous suspension. With increasing hydrophobicity of the shell, the attractive force increased, but with increasing hydrophobicity of the suspending medium, the attractive force decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4153–4158, 2006  相似文献   

3.
4.
the core‐shell particles were prepared by dispersion copolymerization. The core‐shell particles were characterized with Fourier‐transform infrared spectroscopy, Transmission electron microscope and scanning electron microscope. The dispersion stability and electrophoretic performance of core‐shell particles were studied in the mixed medium of tetrachloroethylene and cyclohexance. Microcapsules containing the core‐shell particles were prepared by coacervation. Results showed that the core‐shell particles had good dispersion stability and it had no electric response, which could be used as grounding particles for E‐Ink. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1195–1199, 2007  相似文献   

5.
In this work, a double‐nozzle coaxial electrohydrodynamic atomization (CEHDA) system was designed as an instructive case toward large‐scale production of core‐shell microspheres. The effect of nozzle‐to‐nozzle distance was investigated to reveal that the interference between neighboring nozzles significantly affect the product quality in terms of morphology and core‐shell structure. Optimal spacing indicated that ~3000 nozzle/m2 packing density may be achieved with minimum interference of electric field from neighboring nozzle by adjusting the nozzle‐to‐nozzle distance greater than 0.018 m. The proposed multi‐scale model also showed that the X‐component of electric field strength (Ex) at the region near side nozzles increases with increasing nozzle number, and the bending of jets/sprays at the side may be reduced by using dummy nozzle at the edge side. The model could guide the design of multi‐nozzle CEHDA system for production of core‐shell microparticles in large‐scale. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5303–5319, 2017  相似文献   

6.
Microcapsule with poly(ethylene‐co‐vinylacetate) (EVA) core‐polyurethane (PU) shell structure was synthesized by interfacial polymerization in aqueous polyol dispersion with ethylene diamine as the chain extender of toluene diisocyanate in poly(vinyl alcohol) aqueous solution as the stabilizing agent. The effects of polyol constituent on the average particle size and distributions, morphologies, color strength, and friction fastness of core‐shell particles were investigated to design microcapsule. The friction fastness of printed fabrics with EVA core‐PU shell microcapsules became the increase to 4–5 grades. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 893–902, 2007  相似文献   

7.
Cotton fabric with excellent antibacterial durability was obtained when treated with chitosan‐containing core‐shell particles without any chemical binders. These amphiphilic nanosized particles with antibacterial chitosan shells covalently grafted onto polymer cores were prepared via a surfactant‐free emulsion copolymerization in aqueous chitosan. Herein, two core‐shell particles, one with poly(n‐butyl acrylate) soft core and another with crosslinked poly(N‐isopropylamide) hard core, were synthesized and applied to cotton fabric by a conventional pad‐dry‐cure process. Antimicrobial activity was evaluated quantitatively using a Shake Flask Method in which the reduction of the number of Staphylococcus aureus cells was counted. The results showed that treated fabric had an excellent antibacterial property with bacterial reduction higher than 99%. The antibacterial activity maintained at over 90% reduction level even after 50 times of home laundering. The fabric surface morphology as well as the effect of latex particles with different core flexibilities on fabric hand, air permeability, break tensile strength, and elongation was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1787–1793, 2006  相似文献   

8.
Two types of core‐shell structured latexes, poly(methyl methacrylate‐co‐butadiene‐co‐styrene) (MBS) and poly(methyl methacrylate‐co‐methylphenyl siloxane‐co‐styrene) (MSiS) were used to modify recycled polycarbonate (PC) for the enhancement of toughness and flame retardancy. The impact strength of the modified PC blends was not improved after melt‐blending recycled PC with these two kinds of latexes, probably because the latex particles were not evenly dispersed in the PC matrix because of the incompatibility between PC and PMMA shell of the latexes. Addition of a compatibilizer, e.g. diglycidyl ether of bisphenol‐A or poly(styrene‐co‐maleic anhydride), can effectively enhance the toughening effect of recycled PC with core‐shell structured modifiers. The presence of compatibilizer in the blends reduces the interfacial tension and introduces a steric hindrance to coalescence, and thus enhances the interfacial adhesion between PC domain and PMMA shell, and improves the dispersion of core‐shell structured particles in the PC matrix. The ternary blends achieve a high impact resistance by cavitation of the particles, which relieves the triaxial stress and promotes massive shear yielding of the matrix, and then enables the matrix to fracture by the plane stress ductile tearing mode. Additionally, MSiS has a silicone‐based core and can effectively retard the combustion of recycled PC. The blends containing 7 wt % MSiS and 3 wt % compatibilizer can achieve a UL94 V‐0 rating in vertical burning test. We proposed that, during combustion, a fine dispersion of MSiS particles in the PC matrix facilitates the rapid migration of MSiS and formation of a uniform and highly flame resistant char barrier on the surface of the modified PC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The silica/polypyrrole core‐shell composites were fabricated by in situ chemical polymerization of pyrrole monomer on the surface of the silica spheres. Silica sol particles with narrow size distributions were prepared by hydrolysis of tetraethoxysilane with sol–gel method. Polypyrrole shell was obtained by chemical polymerization of pyrrole monomer on the surface of the silica spheres in the water–ethanol mixture. It can be seen from the experiment, with the adding of small amount of ethanol cosolvent to the aqueous reaction solution, a uniform coating of polypyrrole appeared on the surface of silica. The core‐shell morphology of composite particles prepared with variation ethanol adding amount was analyzed by TEM. Meanwhile, the conductivity of the core‐shell composite is found to be enhanced apparently compared with those prepared from pure aqueous system. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
11.
Polysilsesquioxane–fluoroacrylate copolymer [poly(methyl methacrylate)–butyl acrylate–dodecafluoroheptyl methacrylate)] (FPSQ) composite latex particles with a trilayer core–shell morphology were manufactured by seeded emulsion polymerization, where PSQ latex particles bearing reactive methacryloxypropyl moieties were first produced by the hydrolysis‐condensation of (3‐methacryloxypropyl)trimethoxysilane, and then they were utilized as seeds, with methyl methacrylate, butyl acrylate, and dodecafluoroheptyl methacrylate as the inner and outer shell monomers. Fourier‐transform infrared spectra and 1H‐NMR confirm the structure of the FPSQs. Transmission electron microscopy and scanning electron microscopy demonstrate that the obtained composite emulsion particles emerge with the trilayer core–shell pattern. Due to the anchoring of PSQ nanoparticles, the thermal stabilities of the FPSQ films are strengthened, and the resistance to heat is gradually improved along with the increase of the fluoroacrylate dose in the polymer matrix composite. X‐ray photoelectron spectroscopy, atomic force microscopy (AFM), and hydrophobicity investigations indicate that the fluorinated chain segments tend to concentrate at the film–air two‐phase interface. In addition, the AFM result denotes that importing more fluorine into the FPSQ hybrid material will engender greater phase separation and enrichment of the fluoroalkyl segments and a rougher morphology. Thus, the water contact angle of the FPSQ film can ultimately reach 121.4°. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44845.  相似文献   

12.
In this study, a novel mechanochemical route to prepare core‐shell structured particles was introduced. XPS, TEM, and dissolving experimental results indicate the formation of [(inorganic particle)/(elastomer)] core‐shell structured particles, and several kinds of calcium carbonate (nano‐CaCO3) particles with various interfaces were obtained. The mechanical properties and morphological results indicate that the surface treatment of nano‐CaCO3 particles and the existence of outer elastic layer will strengthen the interfacial interaction between nano‐CaCO3 particles and PVC matrix, which results in improvement of mechanical properties of PVC/CaCO3 composites. The theoretical calculations of the interfacial interaction and DMA results confirm these especially when the surface of nano‐CaCO3 particles was treated by MMA and coated in succession by ACR through vibro‐milling. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1084–1091, 2006  相似文献   

13.
Novel core‐shell latices with a partially crosslinked hydrophilic polymer core and a hard hydrophobic shell of polystyrene were prepared to improve optical properties of coated paper such as gloss and brightness. These core‐shell latices were prepared by sequential addition of a monomer mixture of styrene, n‐butylacrylate and methacrylic acid. Different crosslinkers were used to form the polymer core and in the second stage styrene to form the hard shell component. In addition, attempts were made to further improve optical properties by introducing a new polymerizable optical brightener, i.e., 1‐[(4‐vinylphenoxy)methyl]‐4‐(2‐phenylethylenyl)benzene during polymerization either into the core or into the shell. The prepared core‐shell latex particles were used as specialty plastic pigments for paper coating together with kaolin as the primary pigment. The runability of paper coating formulation by either using a laboratory scale Helicoater or pilot scale JET‐coating machine was very good. The produced coated papers were printed on both sides employing a heat set web offset (HSWO) printer to study the quality of image reproduction in terms of print gloss, print mottle, print through, etc. The core‐shell latices improved the overall print quality. Furthermore, the results demonstrated that by optimizing polymer composition one can significantly enhance the optical properties and surface smoothness of coated paper. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The toughening behavior of polycarbonate modified with core‐shell type particles was investigated. The alloys were found to exhibit maximum impact strength upon addition of a modifier with a poly(butyl acrylate) rubbery core of 0.25 μm diameter. The incorporation of particles with diameter greater than 0.25 μm resulted in decreased impact strength. The influence of rubber phase contents on toughness was also studied. It was observed that the alloys exhibited maximum impact strength upon addition of 4 wt % rubber phase. Further increase in the rubber phase content resulted in reduced impact strength. Fractography of the samples showed that, below 4 wt % rubber phase content, the fracture occurs mainly by internal crazing and, from 4 wt % onward, only by shear deformation. When the effect of dual particle size distribution was analyzed, it was found that there was only a moderate increase in toughness compared with alloys containing monosized particles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 748–755, 2005  相似文献   

15.
Narrow‐disperse and monodisperse cross‐linked core–shell polymer particles containing different functional groups, such as esters, hydroxyls, chloromethyls, carboxylic acids, amides, cyanos, and glycidyls, in the shell layers in the micrometer size range were prepared by a two‐stage precipitation polymerization in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80% DVB, was precipitation polymerized in acetonitrile without any stabilizer as the first‐stage polymerization and was used as the core. Several functional monomers, including methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2‐hydroxyethyl methacrylate, glycidyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, t‐butyl acrylate, i‐octyl acrylate, acrylic acid, acrylamide, acrylonitrile, styrene, and p‐chloromethyl styrene, were incorporated into the shells during the second‐stage polymerization. The resulting core–shell polymer particles were characterized with scanning electron microscopy and Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1776–1784, 2006  相似文献   

16.
17.
The ultrasonic‐assisted synthesis method provides a fast, simple, and large‐scale route for synthesizing desired materials under ambient conditions. In this work, we report on the facile preparation of ZnO‐ZnS core‐shell nanorods on a fluorine‐doped tin oxide (FTO) substrate. The core‐shell nanorods were synthesized by sequential nanoscale reactions involving the preparation of ZnO nanorods and conversion of the ZnO surface into a ZnS shell on the FTO substrate, using an in situ sonochemical method. The ZnO‐ZnS core‐shell nanorods showed improved photocurrents compared with ZnO nanorods for the water oxidation reaction. During the water oxidation reaction, the ZnS shell passivates the surface‐defects of the ZnO, which results in enhanced charge separation in the ZnO nanorods and higher performance.  相似文献   

18.
Non‐ and core‐shell nanoparticles‐containing polyurethane‐based powder coating systems, crosslinked with allophanate bonds containing polyisocyanates were examined. The surface structure of the powder coatings were investigated with a confocal microscopy and polarized optical microscopy (POM) using reflected light. The three‐dimensional surface topography and the values of surface roughness were determined. The surface structure was correlated with the chemical structure of the coatings and macroscopic surface behavior: surface free energy and gloss. These experimental results led to a better understanding of the development of surface topography and morphology and provide valuable information for the development of new polyurethane powder coating systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Suspension‐emulsion combined polymerization process, in which methyl methacrylate (MMA) emulsion polymerization constituents (EPC) were drop wise added to styrene (St) suspension polymerization system, was applied to prepare polystyrene/poly(methyl methacrylate) (PS/PMMA) composite particles. The influences of the feeding condition and the composition of EPC on the particle feature of the resulting composite polymer particles were investigated. It was found that PS/PMMA core‐shell composite particles with a narrow particle size distribution and a great size would be formed when the EPC was added at the viscous energy dominated particle formation stage of St suspension polymerization with a suitable feeding rate, whereas St‐MMA copolymer particles or PS/PMMA composite particles with imperfect core‐shell structure would be formed when the EPC was added at the earlier or later stage of St suspension polymerization, respectively. It was also showed that the EPC composition affected the composite particles formation process. The individual latex particles would exist in the final product when the concentrations of MMA monomer, sodium dodecyl sulfate emulsifier, and potassium persulfate initiator were great in the EPC. Considering the feature of St suspension polymerization and the morphology of PS/PMMA composite particles, the formation mechanism of PS/PMMA particles with core‐shell structure was proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A series of core‐shell structural deNOx catalysts using small‐grain Beta supporting FeOx nanoparticles as the core and tunable CeO2 thin film thickness as sheaths were designed and controllably synthesized. Their catalytic performances were tested for selective catalytic reduction of NOx with NH3 (NH3‐SCR). It was found that CeO2 shell thickness plays an important role in influencing the acidity and redox properties of the catalysts. Fe‐Beta@CeO2 core‐shell catalysts exhibit excellent resistance to H2O and SO2 and high NOx conversion (above 90%) in the wide temperature range (225–565°C). The kinetics result indicates that the coating of CeO2 shell significantly increases the pore diffusion resistance of Fe‐Beta@CeO2 catalysts. Furthermore, in situ DRIFT results reveal that CeO2 shell can promote the formation of NO2 and cis‐ species. But too thick CeO2 shell (~20 nm) would result in the formation of inactive nitrate species, and thereby lead to a decrease of high‐temperature activity of the catalysts. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4430–4441, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号