首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚丙烯酸改性凹土对Pb2+、Ni2+和Cr3+的选择性吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
通过凹土的表面功能化开发高性能低成本的吸附材料,采用溶液聚合法在其表面接枝聚丙烯酸,制备出聚丙烯酸/凹土吸附材料(PAA/ATP),系统考察了PAA/ATP对Pb2+、Ni2+和Cr3+三元混合体系的吸附性能。结果表明:PAA/ATP复合吸附材料的有机物接枝率为14.1%,其结构中出现聚丙烯酸的特征官能团;PAA/ATP吸附Pb2+的动力学符合拟二级动力学,即化学吸附是速率控制步骤,说明PAA/ATP对Pb2+的吸附是一个有化学作用的过程,吸附过程与Pb2+和吸附剂PAA/ATP表面官能团之间的电子转移或电子共用有关;PAA/ATP对Pb2+的吸附符合Langmuir吸附等温模型;PAA/ATP对Pb2+、Ni2+和Cr3+的竞争吸附能力依次为Pb2+ > Cr3+ > Ni2+,即对Pb2+具有较好的选择性吸附。  相似文献   

2.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

3.
Morphological and optical characteristics of radio frequency-sputtered zinc aluminum oxide over porous silicon (PS) substrates were studied before and after irradiating composite films with 130 MeV of nickel ions at different fluences varying from 1 × 1012 to 3 × 1013 ions/cm2. The effect of irradiation on the composite structure was investigated by scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence spectroscopy. Current–voltage characteristics of ZnO-PS heterojunctions were also measured. As compared to the granular crystallites of zinc oxide layer, Al-doped zinc oxide (ZnO) layer showed a flaky structure. The PL spectrum of the pristine composite structure consists of the emission from the ZnO layer as well as the near-infrared emission from the PS substrate. Due to an increase in the number of deep-level defects, possibly oxygen vacancies after swift ion irradiation, PS-Al-doped ZnO nanocomposites formed with high-porosity PS are shown to demonstrate a broadening in the PL emission band, leading to the white light emission. The broadening effect is found to increase with an increase in the ion fluence and porosity. XRD study revealed the relative resistance of the film against the irradiation, i.e., the irradiation of the structure failed to completely amorphize the structure, suggesting its possible application in optoelectronics and sensing applications under harsh radiation conditions.  相似文献   

4.
A novel deep-red-emitting phosphor Ca2ScNbO6:Mn4+ is prepared via a high-temperature solid-state reaction and its luminescent properties are systematically investigated. The results show that Mn4+-activated Ca2ScNbO6 phosphors have broad absorption in ultraviolet region, and show bright deep-red emission at 692 nm. The optimal doping concentration, crystal-field strength, internal quantum efficiency, and mechanism of concentration and thermal quenching effects are discussed in detail. Moreover, NaF flux is screened out to improve both luminescent intensity and morphology of the phosphor. Finally, a red light-emitting diode (LED) lamp is fabricated with as-prepared Ca2ScNbO6:Mn4+ phosphors and a 365 nm LED chip. The electroluminescence spectra show a good overlapping with phytochrome PR and PFR absorbance. The results provided the as-synthesized Ca2ScNbO6:Mn4+ phosphors a great potential in plant growth lighting.  相似文献   

5.
The uptake of Ca2+ and Mg2+ ions from synthetic aqueous solutions by Duolite C206A was studied in static-batch mode. Results revealed that there is no need of pH adjustment. The equilibrium is reached after 30 min with 0.5 g of resin at 25°C. Equilibrium data were well fitted by Langmuir isotherm model. Maximum uptake capacities Qmax were about 23.04 mg Mg2+/g and 64.10 mg Ca2+/g. The pseudo-second-order model was found as the best to explain the ions exchange kinetics effectively. The uptake of Ca2+ and Mg2+ ions by Duolite C206A is exothermic and the process is spontaneous.  相似文献   

6.
为了研究小球藻藻体吸附水体中Cd2+、Pb2+和Cu2+的情况,在检测了典型电子垃圾处理区水体中重金属Cd、Pb和Cu浓度的基础上,采用冷冻干燥的小球藻藻体在模拟重金属离子溶液中进行吸附试验。结果表明,水体中重金属Cu的浓度较高,Cd和Pb的污染程度较严重。藻体对于Pb2+的去除效果较好,去除率和去除量分别达到88.42%和13.262 4 mg/g;Cu2+的去除率较低,但去除量高达17.480 6 mg/g;Cd2+去除率较高,但去除量仅有0.433 7 mg/g。  相似文献   

7.
Blue and far-red light play a key role in plant growth, so it is necessary to develop blue and far-red dual emitting phosphors. However, the match between phosphors and plant pigments is not satisfactory. In this work, we synthesized a series of blue and far-red dual emission Gd2MgTiO6: Bi3+, Cr3+ (GMTO: Bi3+, Cr3+) phosphors and discussed the luminescence performance. The blue emission at 430 nm is ascribed to 3P1 → 1S0 transition of Bi3+ and the far-red emission is ascribed to 4T2 → 4A2 and 2E → 4A2 transitions of Cr3+. Notably, because of the energy competition between Cr3+ ions and host materials, the luminescence tuning realized with the content of Cr3+ doping. In addition, an energy-transfer performance occurred from Bi3+ ions to Cr3+ ions and the photoluminescence intensity of Cr3+ can be enhanced by Bi3+. The pc-LEDs devices were synthesized by GMTO: Bi3+, Cr3+ phosphor, and ultraviolet (UV) chips. Finally, the emission of GMTO: Bi3+, Cr3+ phosphor matched well with the absorption spectra of plant pigments which indicated the potential applications in LED plant lamp.  相似文献   

8.
A novel manganese phosphomolybdate exchanger was synthesized, dried at different temperatures, and evaluated for the elimination of lead, iron, and manganese ions from aqueous solutions. The chemical structure of the cation exchanger was established using Fourier-transform infrared, scanning electron microscopy, Thermo gravimetric analysis/ Differential thermal analysis, and X-ray diffraction. The adsorption performance of the heavy metals Pb2+, Fe3+, and Mn2+ toward the synthesized material has been studied. The obtained outcomes show that the selectivity of the cationic exchanger was descending in this order, Pb2+ > Fe3+ > Mn2+. The highest adsorption capacity was shown to be decreased as drying temperature of the exchanger increases from 50°C to 800°C.  相似文献   

9.
Tb3+‐doped and Eu2+, Tb3+ co‐doped Ca9Y(PO4)7 phosphors were synthesized by conventional solid‐state method. Additionally, the luminescence properties, decay behavior and energy transfer mechanism have already been investigated in detail. The green emission intensity of Tb3+ ions under NUV excitation is weak due to its spin‐forbidden f‐f transition. While Eu2+ can efficiently absorb NUV light and yield broad blue emission, most of which can be absorbed by Tb3+ ions. Thus, the emission color can be easily tuned from cyan to green through the energy transfer of Eu2+→Tb3+ in Ca9Y(PO4)7:Eu2+,Tb3+ phosphor. In this work, the phenomenon of cross‐relaxation between 5D3 and 5D4 are also mentioned. The energy transfer is confirmed to be resulted from a quadrupole‐quadrupole mechanism.  相似文献   

10.
Crosslinked poly(2‐acrylamido glycolic acid) resin was synthesized by radical polymerization. This resin contains three potential ligand groups and was studied as an adsorbent of trace heavy metal ions from a saline aqueous solution and sea water by using the Batch equilibrium procedure. Adsorption characteristics of the resin toward Cu(II), Ni(II), Cd(II), and Pb(II) were studied spectrophotometrically, both in competitive and noncompetitive conditions. The effect of pH, contact time, amount of sorbent, temperature, and salinity were studied. The resin showed a high affinity particularly for Ni(II). It was possible to remove completely Ni(II) and Pb(II) from the resin by 4M HNO3. The retention properties of the resin were also investigated for Cu(II) contained in natural sea waters. The retention behavior was similar to that of the synthetic metal ion aqueous solution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2614–2621, 2003  相似文献   

11.
The fact that the scheelite based compounds are of high technological importance in the area of scintillator and optoelectronics, makes their detailed photophysical study relevant not only for fundamental material science but also in tailoring their optical properties for advanced applications. With this view, we have carried out a very systematic study on near infra-red (NIR) emitting Nd3+ doped CaWO4, SrWO4, and BaWO4 compounds. Light emitting efficiency in AWO4:Nd3+ is governed strongly by radiative/nonradiative properties, host-dopant energy transfer (HDET) efficiency and defect density. We have used photoluminescence, positron annihilation, and photoacoustic (PA) spectroscopy to study the factors effecting light emission. These scheelites are known to exhibit self activated luminescence in visible region due to charge transfer within the tungstate group and wavelength maxima exhibited red shift as we move from Ca→Sr→Ba. This can provide a new strategy to achieve spectral tunability in AWO4 scheelite by changing A2+ ionic radius. The fractional intensity in the green region is least in the case of SrWO4 samples suggesting that the oxygen vacancy density is minimal in case of SrWO4 which is well-supported by the positron annihilation lifetime spectroscopy (PALS). Based on our studies, we found that the HDET was highly efficient in CaWO4:Nd3+ and minimal in BaWO4:Nd3+ which get's reflected in photoluminescence intensity. Emission lifetimes are shorter in CaWO4 and highest in SrWO4 host which are in sync with positron annihilation lifetime values. Based on our results of PALS, it was found that CaWO4:Nd3+ has the highest concentration of defects i.e. cation vacancies; so larger is the probability of nonradiative signals and hence higher PA intensity from it.  相似文献   

12.
《Ceramics International》2021,47(18):25708-25720
Tb3+/Dy3+ co-doped CaLa2(WO4)4 (CLW: Tb3+/Dy3+) and its derivatives were synthesized by the sol-gel method. The morphology, thermal, structure and luminescent-optical properties the as-prepared light-emitting phosphors were characterized by utilizing scanning electron microscopy (SEM), differential thermal analysis (DTA)-thermogravimetric analysis (TG), X-ray diffraction (XRD) and radioluminescence (RL or X-ray luminescence) - photoluminescence (PL) –thermoluminescence (TL or TSL) - optical absorption spectrometry. The Tb3+ and Dy3+ ions were singly or doubly doped and the results were examined in detail. Moreover, for these phosphors, the energy transfer mechanisms which depend on RL and PL spectra were determined. The samples excited by X-ray demonstrate characteristic luminescence peaks of Dy3+ (422, 480, 575, 663 and 747 nm) and Tb3+ (489, 544, 586, 620, 652 and 675 nm). These emissions are similar for RL and PL measurements. It could be said that the energy transfer efficiency of the host material is perfect for rare-earth ions. The synthesized phosphors exhibit various colors from yellow to blue under UV excitation. The optical band gaps of host CLW, CLW: Tb3+, CLW: Dy3+ and co-doped CLW: Tb3+/Dy3+ were calculated at values 3.83 eV, 3.44 eV, 3.64 eV and 3.52 eV, respectively. From the results obtained, the CaLa2(WO4)4: Tb3+, Dy3+phosphors may be one of the potential candidates for light-emitting diode.  相似文献   

13.
The coexistence mechanism of Eu2+ and Eu3+ ions in YAl3(BO3)4 host under different reducing conditions is investigated and confirmed in great detail, which can be described by three aspects as following. First, Eu3+ is protected by the layered structure of YAl3(BO3)4. Second, the number of the interstitial defects ((Al)i,(Y)i) increases with increasing Eu2+ to maintain the charge balance of the system. And these defects can capture free electrons which are used for the reduction of Eu3+. Finally, free holes become more and more with the number of nonequivalent substitution defects (EuY') increasing, which make the 5d electrons of Eu2+easily escape to the conduction band and Eu2+ convert to Eu3+. This work will be of great significance to research coexistence of multiple valence ions in the structure of borate and defect motion with nonequivalent substitution.  相似文献   

14.
Computer modelling techniques are used to investigate the local structure of the zeolite framework around Ni2+ ions in the SI sites of Ni exchanged zeolite-Y. Our calculations show that there are pronounced inward relaxations (0.4 Å–0.6 Å) of the surrounding oxygen ions. The results allow a detailed rationalisation of recent EXAFS and diffraction studies on this zeolite.  相似文献   

15.
掺铽的铝酸锶铕镝磷光体的发光特性及晶相分析   总被引:2,自引:0,他引:2  
采用高温固相法在弱还原气氛下制备了掺入Tb3 的SrAl2O4:Eu2 ,Dy3 磷光体.研究了Tb3 对SrAl2O4:Eu2 ,Dy3 磷光体的发光性能的影响.结果发现,引入Tb3 以后,对基质SrAl2O4的晶体结构基本上没有影响,也未改变磷光体的发光光谱,却使磷光体的初始亮度显著提高,并使余辉时间延长.其余辉强度随时间的变化由最初的快衰减过程和随后的慢衰减过程组成,符合t-1.1的双曲线规律.并初步探讨了Tb3 的作用机制.  相似文献   

16.
Neutron- and electron-irradiated type Ia “black” diamonds were analyzed: three near colorless type Ia diamonds were treated in a nuclear reactor with a dose of 1.8 × 1017 neutrons/cm2 and three equivalent samples were irradiated in an electron accelerator with a dose of approximately 0.5 GGy 10 MeV electrons. The diamonds were then annealed and analyzed after the different steps of the treatment. The samples turned from near colorless to very dark green to opaque black upon irradiation and deep greenish yellow to deep orangy brown upon annealing (Fig. 1). The amount of brown color developed during the treatment was found to relate to the type of irradiation used and likely to the total dose of irradiation. The absorption and photoluminescence features as well as the color changes that were observed were found to be unusual and characteristic for diamonds treated with such high irradiation doses. Certain spectral features such as the 644/649 nm, the 724/734/738 nm, the 920 nm and the 967 nm absorptions were only detected in the neutron-irradiated diamonds while others such as the 6165 cm− 1 and the 805 nm absorptions were only found in the spectra of the electron-irradiated stones.In addition to these treatment experiments some neutron-irradiated very dark green (appearing black) diamonds were heated from 300 to 1100 °C in increments of 50 °C to get a precise idea of the temperature at which color changes occur and the various absorption peaks form. All diamonds turned yellowish to orangy brown after annealing above 700 °C and most of them exhibited unusually strong H1b and/or H1c absorptions after annealing at > 900 °C.  相似文献   

17.
Single‐phase white‐light‐emitting phosphors NaLa9(1?x?y) (GeO4)6O2: xTm3+, yDy3+ (NLGO: xTm3+, yDy3+) have been synthesized by a traditional solid‐state reaction method. The powder X‐ray diffraction (XRD), photoluminescence (PL), PL excitation (PLE) spectra, fluorescence decay curves, chromaticity coordinates, correlated color temperature (CCT), and the cathodoluminescence (CL) properties of the obtained phosphors are measured and discussed in detail. It is discovered that the series samples could be color‐tunable (from blue to yellow) by tuning the doping content of Dy3+ with a fixed Tm3+ content excited at 357 nm and white light (0.341, 0.324) could be obtained with the CCT of 5079 K. A NLGO: 0.01Tm3+, 0.02Dy3+ is studied carefully as representative. The main emissions of Tm3+ (453 nm, 1D23F4) and Dy3+ (478 nm, 4F9/26H15/2; 572 nm, 4F9/26H13/2) make it emit white light with good thermal stability (67% of the initial till 523 K). The energy transfer from Tm3+ to Dy3+ is noticed and further research has been done to explain the enhancement of Dy3+ emission and the excellent thermal stability. It also keeps stable under continuous electron bombardment with high intensity. All of these indicate that it could be a suitable candidate for white‐emitting phosphor applied for near ultraviolet‐white light‐emitting diode (NUV‐WLED) and field‐emission display (FED).  相似文献   

18.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

19.
20.
《Ceramics International》2020,46(3):3264-3274
We report a change in the red photoluminescence of the Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor via doping of singly, doubly and triply ionized ions. The synthesized phosphors show good crystalline nature. The EDS analysis confirms the presence of desired elements in the phosphor samples. The vibrational feature of the phosphor was confirmed by FTIR analysis. The photoluminescence excitation spectra of the phosphor show three peaks at 317, 395 and 467 nm. The Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor emits intense red color on excitations with 395 and 467 nm wavelengths. However, the photoluminescence intensity of the phosphor is larger for 395 nm excitation. When the singly, doubly and triply ionized ions are co-doped in the Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor (i.e. F, WO42−, MoO42−, VO43−, La3+, and Y3+) the photoluminescence intensity of the phosphor is decreased significantly. The decrease in photoluminescence intensity is due to change in local crystal structure created by these ions. Interestingly, the photoluminescence intensity of phosphor increases many times when the (Y3+) ion incorporated phosphor is excited with 317 nm wavelength. The CIE diagram shows color emitted in the red region of visible spectrum and the color purity is larger for triply ionized (Y3+) ion. Thus, the singly, doubly and triply ionized ions activated Na2Sr2Al2PO4Cl9: Eu3+ phosphor may be used in displays devices, photonic devices, solid state lighting and white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号