首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of alloys and blends has increased gradually in the polymer industry so that the plastics industry has moved toward complex systems. The main reasons for making polymer blends are the strengthening and the economic aspects of the resultant product. In this study, I attempted to improve compatibility in a polymer blend composed of two normally incompatible constituents, namely, acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC), through the addition of a compatibilizer. The compatibilizing agent, styrene–butadiene–styrene block copolymer (SBS), was added to the polymer blend in ratios of 1, 5, and 10% with a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by scanning electron microscopy and differential scanning calorimetry. Further, all three blends of ABS/PC/SBS were subjected to examination to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, Izod impact strength, hardness, heat deflection temperature, Vicat softening point, and melt flow index. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2521–2527, 2004  相似文献   

2.
The bulk modification of SBS rubber with maleic anhydride in a mixing chamber of a Haake rheomixer was studied. The effect of temperature, maleic anhydride, and benzoyl peroxide concentrations on the grafting efficiency was evaluated. High grafting efficiency was achieved when the ratio of peroxide and maleic anhydride concentration was high. On the other hand, on this condition high insoluble fraction was generated. The addition of a diamine, 4,4′‐diaminediphenylmethane to the reaction mixture minimizes the amount of insoluble polymer. However, the grafted MAH content also decreases. The graft copolymer was characterized by infrared spectroscopy and the grafting extension was determined by titration. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2953–2960, 2002; DOI 10.1002/app.10355  相似文献   

3.
A styrene–butadiene–styrene triblock copolymer (SBS) was functionalized with glycidyl methacrylate (GMA). Grafting reactions were carried out in an internal mixer at 170°C, using dicumyl peroxide (DCP) as an initiator. The effect of three variables, % GMA, % DCP, and reaction time, on grafting were studied using a factorial design to analyze the experimental data. GMA was grafted onto SBS and its incorporation increased with the % GMA added. The factors levels studied indicated that was an optimum % DCP point about 0.1% w/w to achieve the best incorporation and conversion values. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2074–2079, 2003  相似文献   

4.
A new type of solid state electrodes sensitive to pH changes is described, in which the chemical‐sensitive layer consists of Pt microparticles deposited on a conducting polymer (polyaniline, polypyrrole) blend containing 22.7% w/w zeolite. These sensors are stable in aqueous electrolyte solutions of low pH value at temperatures up to 45°C with response time in seconds. At 25°C, sensor sensitivity was ?310 ± 40 mV/pH and ?1300 ± 100 mV/pH for polyaniline and polypyrrole blends, respectively. Interferences appear to be acceptably small. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1853–1856, 2006  相似文献   

5.
Within a IUPAC study, melt processing, mechanical, and fatigue crack growth properties of blends of polyamide 6 (PA 6) and poly(acrylonitrile–butadiene–styrene) (ABS) were investigated. We focused on the influence of reactive compatibilization on blend properties using a styrene–acrylonitrile–maleic anhydride random terpolymer (SANMA). Two series of PA 6/ABS blends with 30 wt % PA 6 and 70 wt % PA 6, respectively, were prepared with varying amounts of SANMA. Our experiments revealed that the morphology of the matrix (PA 6 or ABS) strongly affects the blend properties. The viscosity of PA 6/ABS blends monotonically increases with SANMA concentration because of the formation of high‐molecular weight graft copolymers. The extrudate swell of the blends was much larger than that of neat PA 6 and ABS and decreased with increasing SANMA concentrations at a constant extrusion pressure. This observation can be explained by the effect of the capillary number. The fracture resistance of these blends, including specific work to break and impact strength, is lower than that of PA 6 or ABS alone, but increases with SANMA concentration. This effect is most strongly pronounced for blends with 70 wt % PA 6. Fatigue crack growth experiments showed that the addition of 1–2 wt % SANMA enhances the resistance against crack propagation for ABS‐based blends. The correlation between blend composition, morphology and processing/end‐use properties of reactively compatibilized PA 6/ABS blends is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Blends of polycarbonate (PC) and poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) with different compositions are characterized by means of dynamic mechanical measurements. The samples show phase separation. The shift in the temperatures of the main dynamic mechanical relaxation shown by the blend with respect to those of the pure components is attributed to the migration of oligomers present in the ABS toward the PC in the melt blending process. A comparison with other techniques (dielectric and calorimetric analysis) and the application of the Takayanagi three block model confirm this hypothesis. In all the studied blend compositions (ABS weight up to 28.6%) the PC appears as the matrix where a disperse phase of ABS is present. The scanning and transmission electron microscopy micrographs show that the size of the ABS particles increases when the proportion of ABS in the blend increases. The FTIR results indicate that the interaction between both components are nonpolar in nature and can be enhanced by the preparation procedure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1507–1516, 2002  相似文献   

7.
The dc electrical conductivity (σ) of HCl‐protonated polyaniline, polypyrrole, and their blends was measured from 80 to 300 K for thermal aging times between approximately 0 and 600 h. The thermal aging took place at 70°C under room atmosphere. The change of σ with the temperature (T) and the decrease of σ with the thermal aging time (t) are consistent with a granular metal type structure, in which conductive grains are randomly distributed into an insulating matrix. Aging makes the grains shrink in a corrosion‐like process. From σ = σ(T) measurements the ratio s/d, where s is the average separation between the grains and d their diameter, as well as the rate d(s/d)/dt of their decrease with t were calculated. These revealed that the conductive grains consist of a shell, in which aging proceeds at a decreasing rate, and a central core, which is consumed at a much slower rate. Our measurements not only permitted the estimation of the shell thickness, which lies between 0 and 5 Å, but also gave quantitative information about the quality of the shells and the cores from their aging rates. The shells are consumed with an average rate of d(s/d)/dt = 6.6 × 10?4 (h?1), which is about 5 times greater than the more durable cores. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 117–122, 2005  相似文献   

8.
The morphologies of nylon 6/acrylonitrile–butadiene–styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3–20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile–butadiene–styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3512–3518, 2003  相似文献   

9.
Blend films composed of polyaniline and aliphatic copolymer having carboxylic acid groups were prepared by vaporizing a solvent from a solution of both polymers. Poly(methyl methacrylate‐co‐methacrylic acid) and poly(1‐vinylpyrrolidone‐co‐acrylic acid) were used as the copolymers in this work. Conductivity of the blend film increased with decreasing concentration of polyaniline and then decreased in the region of low concentration. The N1s peak in the ESCA spectrum of the blend film was shifted to higher binding energy with decreasing concentration of polyaniline and then was done to lower the binding energy in the region of low concentration. Polyaniline chains in the blend films become conductive by being oxidized with the carboxylic acid groups, which are the constituents of the copolymers. Through strong intermolecular interactions such as ionic bonding and hydrogen bonding between polyaniline and the copolymer, densities of the blend films are always higher than those predicted on the basis of the additive law. Blend films with higher density and higher conductivity are able to be prepared with a higher vaporizing rate, given that phase separation occurring during vaporizing process can be depressed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1113–1117, 2002  相似文献   

10.
In the present work, we describe the preparation and subsequent characterization of polymeric blends consisting of a monoglyceride (MG) synthesized from the Babassu's oil and the already commonly employed polyaniline (PAni). By following changes in the complex impedance of capacitor‐like devices we observe that the presence of MG in the PAni/MG blends decreases electrical conductivity and that this decrease is a function of the content of MG in the blend, i.e., the blend with 30% of MG shows Z′ about seven times greater than the one with 10% of MG. Fourier transform infrared measurements prove the formation of MG and the presence of secondary amine groups (N? H bonds) in the blends, which allow for the chemical doping of PAni by protonation, further studies are necessary to access the viability of employing this new material as active layer in electronic organic devices. Atomic force microscopy images show the formation of agglomerates due to the presence of MG. In addition, the polymeric mixture acts only as a blend, providing a physical interaction between different components. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46198.  相似文献   

11.
As the material properties of acrylonitrile–butadiene–styrene copolymer (ABS) have an excessively wide margin for applications in automobile console boxes, ABS partly replaced with poly(l ‐lactic acid) (PLA) may be used for the same purpose with improved ecofriendliness if the corresponding deterioration of the material properties is acceptable through the choice of appropriate additives. ABS composites with 30 wt % renewable components (PLA and cellulose pulp) were prepared by melt compounding, and the material properties were examined as a function of the additive content. The changes in the mechanical properties of the ABS/PLA blends were examined after the addition of cellulose pulp and two clays [Cloisite 25A (C25A) and sodium montmorillonite] as well as these two clays treated with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT). The heat distortion temperatures of the composites were measured as a function of the content of the TESPT‐treated C25A. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40329.  相似文献   

12.
The aim of this investigation was to evaluate the possibility of mechanically recycling blends of ABS with minor amounts of semicrystalline engineering plastics, such as polyamide, poly(ethylene terephthalate), and poly(butylene terephthalate). Compatibilizers and a core–shell impact modifier were incorporated into the blends in order to improve the mechanical properties. The toughness values, measured by the J‐integral method, and the Charpy impact strength did not always exhibit consistent results, due to the significant difference in deformation rate and in fracture mechanism. The formation of co‐continuous structures in the blends were noted and discussed. The fibrillation in the fracture surface contributed to the toughness as measured by the J‐integral method. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2435–2448, 2002  相似文献   

13.
In this work, in situ investigations of the micromechanical properties of reactively compatibilized blends of polyamide 6 (PA6) and an acrylonitrile–butadiene–styrene copolymer (ABS) were performed with transmission electron microscopy. Three PA6/ABS blends were prepared with a disperse morphology (inclusions of PA6 or ABS) and with a cocontinuous structure. The objective of this work was to study the deformation of the inclusions and the interface between the PA6 phase and the ABS phase. Our transmission electron microscopy investigations revealed that the morphology of the blends was strongly influenced by the asymmetric nature of the interface between PA6 and ABS. In the blends with a PA6 matrix, the interface between PA6 and the ABS inclusions was deformed in tensile deformation under uniaxial loading. A strong influence of the PA6 water content on the (micro)mechanical behavior was observed. Although the “dry” blends behaved in a brittle fashion, the “wet” blends behaved in a ductile fashion with the formation of deformation bands in the matrix (PA6 or ABS), which were initiated by stress concentration at the particles (ABS or PA6, respectively). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Viologen–polyaniline (PANI) systems were prepared by PANI being coated onto viologen‐grafted low‐density polyethylene films. PANI in this system could undergo photoinduced doping with ultraviolet irradiation. The electrical stability of the electrically conductive viologen–PANI systems was found to be stable in air, but the conductivity decreased rapidly when the sample was treated in aqueous media of pH > 5 because of the migration of the anions out of PANI into water. However, the conductivity increased by a factor of 2 after treatment in a 1M HCl solution because of the further protonation of PANI by acid. The structural changes of these systems were monitored with ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and resistance measurements. The electrical stability of the viologen–PANI system in water could be enhanced via spin coating with poly(methyl methacrylate) (PMMA) because this layer inhibited the migration of the anions out of the system. The photoinduced doping of PANI could be carried out either before or after the spin coating of PMMA. The advantages and limitations of each method were demonstrated. A PMMA coating with a thickness of approximately 10 μm allowed a significant doping level to be achieved within a short period of irradiation and, at the same time, effectively shielded the film from the effects of the aqueous medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2099–2107, 2002  相似文献   

15.
Conducting poly(acrylamide) films were synthesized by exposing the polyacrylamide films impregnated with ammonium peroxodisulphate, an oxidizing agent, to hydrochloric acid vapor and then to aniline vapor. The effects of varying the exposure time to aniline vapor and the resulting composite films of polyacrylamide–polyaniline were characterized by different methods. The mode of conduction has also been studied. The conductivity of the resulting composites reached up to 10−5 s/cm2. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 841–844, 1998  相似文献   

16.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

17.
A conductive poly(aniline codoped with dodecyl benzene sulfonic acid and hydrochloric acid) [PANI‐D/H, yield: 32.2%, intrinsic viscosity ([η]): 1.39 dL/g, electrical conductivity: 7.3 S/cm] was synthesized by chemical oxidative polymerization from aniline‐dodecylbenzene sulfonic acid salt (A‐DS)/aniline‐hydrochloric acid salt (A‐HS) (6/4M ratio) in an aqueous system. Waterborne polyurethane (WBPU) dispersion obtained from isophorone diisocyanate/poly(tetramethylene oxide)glycol/dimethylol propionic acid/ethylene diamine/triethylene amine/water was used as a matrix polymer. The blend films of WBPU/PANI‐D/H with various weight ratios (99.9/0.1–25/75) were prepared by solution blending/casting. Effect of PANI‐D/H content on the mechanical property, dynamic mechanical property, hardness, electrical conductivity, and antistaticity of WBPU/PANI‐D/H blend films was investigated. The dynamic storage modulus and initial tensile modulus increased with increasing PANI‐D/H content up to 1 wt %, and then it was significantly decreased about the content. With increasing PANI‐D/H content, the glass transition temperature of soft segment (Tgs) and hard segment (Tgh) of WBPU/PANI‐D/H blend films were shifted a bit to lower the temperature. The tensile strength and hardness of WBPU/PANI‐D/H blend films increased a little with increasing PANI‐D/H content up to 0.5 wt %, and then it was dramatically decreased over the content. The elongation at break of WBPU/PANI‐D/H decreased with an increase in PANI‐D/H content. From these results, it was concluded that 0.5–1 wt % of PANI‐D/H was the critical concentration to reinforce those various properties of WBPU/PANI‐D/H blend films prepared in this study. The electrical conductivity of WBPU/ultrasonic treated PANI‐D/H (particle size: 0.7 μm) blend films prepared here increased from 4.0 × 10?7 to 0.33 S/cm with increasing PANI‐D/H content from 0.1 to 75 wt %. The antistatic half‐life time (τ1/2) of pure WBPU film was about 110 s. However, those of WBPU/ultrasonic treated PANI‐D/H blend films (τ1/2: 8.2–0.1 s, and almost 0 s) were found to decrease exponentially with increasing PANI‐D/H content (0.1–9 wt %, and above 9 wt %). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 700–710, 2004  相似文献   

18.
Composite conductive fibers based on poly(3,4‐ethylenedioxythiophene) (PEDOT)–polystyrene sulfonic acid (PSS) blended with polyacrylonitrile (PAN) were prepared via a conventional wet‐spinning process. The influences of the PEDOT–PSS content on the electrical conductivity, thermal stability, and mechanical properties of the composite fibers were investigated. The fibers with 1.83 wt % PEDOT–PSS showed a conductivity of 5.0 S/cm. The breaking strength of the fibers was in the range 0.36–0.60 cN/dtex. The thermal stability of the PEDOT–PSS/PAN composite fibers was similar to but slightly lower than that of the pure PAN. The X‐ray diffraction results revealed that both the pure PAN and PEDOT–PSS/PAN composite fibers were amorphous in phase, and the crystallization of the latter was lower than that of the former. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Poly(vinylidene fluoride-co-hexafluoropropylene)/polyaniline (PVDF-co-HFP/PAni) conductive blends were prepared by two methodologies involving the in situ polymerization in two different media and dry blending approach using ball milling. Dodecylbenzenesulfonic acid (DBSA) was used both as surfactant and as protonating agent in PAni synthesis. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) spectroscopy, and thermogravimetric analysis were used for characterizing the blends. PAni and PVDF/PAni prepared by in situ polymerization in H2O/toluene medium exhibited superior electrical conductivity, higher thermal stability and significantly higher electromagnetic interference shielding effectiveness (EMI SE) than those prepared in H2O/dimethylformamide (DMF) medium. PVDF/PAni with high-PAni content (>40%) prepared by the dry blend approach presented higher conductivity and EMI SE than those prepared by in situ polymerization. The molding temperature exerted significant influence on the conductivity and EMI SE for the blend containing higher amount of PAni. The free-solvent dry blending approach using ball milling presented similar conductivity value but the higher EMI SE when compared with in situ polymerization, and is considered environmentally and technologically interesting.  相似文献   

20.
Conductive polyaniline solutions were chemically prepared using bis (2-ethylhexyl) hydrogen phosphate (DiOHP) as the dopant chemical species. The codissolution method leads to conductive polyaniline–polystyrene (PANI–PSt) composites with good mechanical properties. The electronic structure of both conducting PANI films and PANI–PSt blends was investigated by X-ray photoelectron spectroscopy, which allowed one to quantify the proportion of benzenoid amine, quinoid imine, and protonated units. Blending polyaniline with PSt does not involve important modifications in the polymer electronic structure. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1209–1214, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号