首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
针对小分子有机溶剂预处理时存在的缺陷,尝试高沸点甘油预处理木质纤维素以提高其可酶解性的研究。通过对预处理时一些关键参数进行初步优化,获得适宜预处理条件为:质量分数70%甘油溶液、液固比(麦草与甘油水溶液的质量比)20、蒸煮温度230℃和保温1 h;麦草纤维素保留率约92%,木质素脱除率达74%;常压甘油自催化预处理麦草在纤维素酶5FPU/g干底物时4,8 h纤维素酶解转化率为41.3%。结合电镜观察和红外光谱分析,初步认为常压甘油自催化预处理通过脱除木质纤维素原料中不利于纤维素酶解的组分及打破其致密不均一结构,从而提高了木质纤维素的可酶解性。  相似文献   

2.
玉米芯氨水预处理及酶解工艺研究   总被引:3,自引:0,他引:3  
为有效提高木质纤维素酶解转化率,文中以玉米芯为研究对象,在常压中温下采用氨水浸泡工艺处理原料,考察了预处理条件对木质素脱除率和纤维素、半纤维素酶解转化率的影响规律。确定了最适预处理条件:氨水质量分数为15%、固液质量体积比为1∶6 g/mL、反应温度为60℃和预处理时间为12 h。该条件下纤维素、半纤维素回收率和木质素脱除率分别为94.5%,86.7%和48.1%;在每g葡聚糖加入30 FPU纤维素酶和60 CBUβ-葡萄糖苷酶条件下,酶解24 h后纤维素和半纤维素酶解转化率分别可达83.0%和81.6%。  相似文献   

3.
采用光催化耦合TiO2-NaOH预处理稻秆的方法,以有效提高其酶解糖化的效果。研究了光催化剂TiO2粒径、料液比、TiO2质量浓度和光催化时间对稻秆预处理的影响。采用三因素三水平的Box-Behnken试验设计,利用响应面法对稻秆预处理工艺参数进行研究,以酶解预处理稻秆的葡萄糖质量浓度为响应值进行响应面分析,得到最优光催化条件:料液比为1∶41(g/mL),P25型TiO2质量浓度为0.7 g/L,光催化时间为54 min。在此条件下,酶解后葡萄糖质量浓度最高达(19.02±0.16)mg/mL。所建立的TiO2-NaOH预处理方法,为木质纤维素的高效预处理提供了借鉴,对推动生物质能源的高效利用提供了理论依据。  相似文献   

4.
纤维素酶单位酶活力较低、酶用量较高及酶自身易失活等因素依然是木质纤维素工业生产能源和生物基产品的瓶颈性问题。本文尝试在木质纤维素基质水解时添加一些非离子型表面活性剂以减少纤维素酶用量,并对这些非离子型表面活性剂促进酶解效率提高的原因进行了初步探讨。研究发现,添加非离子性表面活性剂能提高木质纤维素的酶解,添加浓度为0.05 g/g底物,常压甘油自催化预处理麦草经过添加两种非离子表面活性剂Tween-80和PEG 6000后葡萄糖产量分别可提高20%左右;非离子表面活性剂对不含木质素的原料酶解产糖也有较大的提高,以滤纸为底物时葡萄糖产量提高近90%,以微晶纤维素为底物时分别提高70%以上;添加非离子表面活性剂使得酶解体系中扩散系数k升高,异相反应效率提高,酶促反应动力学Km值明显减小,显著提高底物对纤维素酶的亲和力。  相似文献   

5.
对玉米秸秆进行氢氧化钠/蒽醌(NaOH/AQ)去木质化预处理,考察了预处理温度、时间和NaOH用量对玉米秸秆脱木质素程度的影响,并探讨了脱木质素程度对提高预处理后物料酶解性能的影响。L9(34)正交试验得出较适宜预处理工艺条件为:温度160℃,时间60 min,NaOH用量(以绝干原料质量计)2.8%;其他条件为AQ用量0.05%,固液比1:5(g:mL),此时木质素脱除率为75%,酶解后聚糖转化率达到73.79%。随着物料脱木质素程度的提高,其酶解效率相应增加;当木质素脱除率达到一定程度后,预处理后的聚糖转化率达到最大值,继续提高木质素脱除率,聚糖转化率反而降低。响应面优化的酶水解工艺条件为纤维素酶用量30 FPU/g,β-葡萄糖苷酶10 IU/g,反应时间72 h,温度50℃,底物质量分数2.5%,此时还原糖得率为85.62%。对酶解液进行HPLC分析,酶解液中的葡萄糖质量浓度为14.83 g/L,木糖质量浓度为4.83 g/L。XRD分析显示,预处理前后纤维素的晶型没有变化,而结晶度由31.40%提高至46.91%,表明物料中木质素和半纤维素发生了不同程度的溶出。  相似文献   

6.
里氏木霉Rut-C30产纤维素酶培养基优化及其酶解特性   总被引:1,自引:0,他引:1  
以廉价的工业纤维素诱导里氏木霉Rut-C30产纤维素酶,并对液体深层发酵培养基进行优化,采用响应面中心组合设计,以滤纸酶活为响应值,考察工业纤维素、麦麸、大豆粉浓度对纤维素酶活的影响. 结果表明,优化后的培养基组成为:工业纤维素35.62 g/L、麦麸19.37 g/L、大豆粉38.49 g/L,该条件下滤纸酶活达9.13 IU/mL,比优化前提高了72.26%,葡萄糖苷酶酶活提高了80.39%. 在121℃下用2% NaOH对玉米秸秆预处理45 min,物料中纤维素含量达64.94%,用该粗酶液酶解后酶解得率为94.68%.  相似文献   

7.
目的:探讨微波和甘油联合预处理对稻草粉酶解效果的影响。方法:采用响应面法,以固液比、微波加热时间、还原糖浓度为因素,考察对还原糖浓度的影响。结果:液固比为19.08∶1、微波处理时间为6.58min、微波功率为278.16W,此时还原糖浓度将为509.95μg/mL。结论:微波和甘油联合预处理对稻草粉酶解效果较微波预处理和甘油预处理更为显著。  相似文献   

8.
以浓磷酸预处理废弃棉织物,获得再生纤维素,对其进行酶水解,研究了预处理温度、时间和磷酸浓度与高固酶水解基质浓度的关系. 结果表明,温度和时间与高固酶水解潜力基质浓度均呈线性正相关性,温度从30℃提高至60℃,潜力基质浓度由4.6%提高至18.0%;时间由3.0 h延长至12.0 h,潜力基质浓度由10.8 %提高25.1%,但预处理时间过长不利于提高酶水解基质浓度. 磷酸浓度为85.0%时,潜力基质浓度达17.6%,改变浓度对潜力基质浓度提高影响较小. 废弃棉织物在60℃下用85.0%磷酸处理12.0 h后,高固酶水解的潜力基质浓度可达25.1%.  相似文献   

9.
甘草渣是甘草提取完活性成分后的剩余物,富含木质纤维素。以甘草渣为研究对象,以2种稀碱(Na2CO3水溶液和NaOH水溶液)以及稀碱(Na2CO3水溶液或NaOH水溶液)和醋酸乙醇胺离子液体混合液为溶剂对甘草渣进行预处理,研究不同碱浓度和预处理温度对甘草渣组成及酶解效果的影响。结果表明,质量分数2%的NaOH水溶液在固液比(w/v)1:10(即每克甘草渣加入10毫升溶剂)、100 ℃条件下预处理甘草渣1.5 h,木质素去除率达54.1%、纤维素回收率为77.2%;样品酶解24 h,葡萄糖得率可达53.5%,较预处理前甘草渣(10.6%)提高了4.0倍。最后,对预处理后的甘草渣进行高固酶解,在固液比3:10、酶用量45 FPU/g生物质条件下酶解72 h,葡萄糖产量达到86.2 g/L、木糖18.9 g/L。以此酶解液为碳源进行发酵,96 h后发酵液中2,3-丁二醇和乙偶姻总产量为43.9 g/L,还原糖转化率为0.42 g/g;与对照组相比,酶解液更有利于菌体生长,生产强度提高,但转化率略低。  相似文献   

10.
铁盐对玉米秸秆稀酸预处理及酶解的影响   总被引:2,自引:0,他引:2  
常压下在0.8%硫酸水溶液中加入适量硫酸铁对玉米秸秆粉于80~100℃搅拌、蒸煮回流预处理,反应对原料中纤维素成分破坏程度小,有效促进半纤维素水解,并对随后酶解有明显促进作用.当底物/溶液比为1∶15 g/mL,铁盐浓度为1.0mmol/L、处理4 h时效果较好,纤维素转化率可由46.9%提高到51.3%,酶水解初始速率由15.0 mg/(g?h)(指单位时间内单位质量干料所产生的还原糖)提高至17.9 mg/(g?h).  相似文献   

11.
BACKGROUND: Because ethanol organosolv pulping requires high pressure and is highly volatile, an atmospheric autocatalytic glycerol organosolv pretreatment process has been investigated. Enzymatic hydrolysis of wheat straw pretreated using this method was evaluated to explore a novel, economically competitive and environmentally friendly pretreatment technology for bioconversion of lignocellulosic biomass. The method also provides economical utilization of industrial glycerol, helping to cope with the challenge of the excess production of glycerol and to further defray the cost of biodiesel production. RESULTS: With preliminary optimization of the parameters in the pretreatment process, pretreatment performed at 240 °C for 4 h with the glycerol addition of 15 g g?1 dry feedstock and wash at 80 °C led to high recovery of cellulose (95%) and good removal of lignin (>70%), which formed, respectively, 80% and 10% of the pulp. The enzymatic hydrolysis of the pretreated wheat straw yielded 90% of theoretically achievable sugar after 24 h and 92% after 48 h. CONCLUSION: Atmospheric autocatalytic glycerol organosolv pretreatment removed significant amounts of hemicellulose and lignin without affecting good cellulose recovery. The proposed novel strategy increased the susceptible of wheat straw to enzyme attack and led to enzymatic hydrolysis that was comparable with that achieved using ethanol organosolv pretreatment. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
研究了中低温稀酸预处理对皇竹草化学组成变化、纤维素酶水解得率与总糖得率的影响,并采用扫描电镜(SEM)对皇竹草纤维结构变化进行了分析.结果表明,随着硫酸浓度的增大、温度的升高和时间的延长,半纤维素含量大幅度降低,且预处理后纤维素酶水解得率也逐渐增大.较好的预处理条件为100 g皇竹草原料,在固液比1:5(g:mL)条件下,用质量分数4.0%硫酸在温度110 ℃下,经过8 h预处理后,纤维素保留率为87.48%,半纤维素水解率为93.68%,所得固体渣经纤维素酶水解72 h后得率为86.3%(纤维素酶用量40 FPIU/g,以纤维素质量计),100 g原料可得到总糖量为54.53 g.预处理后皇竹草纤维表面和细胞壁受到破坏,表面积增大,有利于纤维素酶水解作用的进行.  相似文献   

13.
Although many previous studies have been carried on the enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid, this paper emphasizes the use of different conditions to attain the highest yields of two sugars, xylose and glucose, from both stages. The pretreatment was performed at a range of sulfuric acid concentrations of 2, 4 and 6 % at 80, 100 and 120 °C. Up to 77 % xylose yield was obtained while the glucose yield was only 8.4 %. The corresponding solid phase was hydrolyzed by cellulase and the influences of five factors and their interactions on enzyme hydrolysis were evaluated by response surface methodology based on one‐factor‐at‐a‐time experiments. The optimal levels for each variable to obtain the highest reducing sugar yield were as follows: enzyme concentration of 22 FPU/g substrate, substrate concentration of 77 g/L, temperature of 49 °C, pH 4.8 and reaction time of 38 h. A reducing sugar yield of 42.11 g/100 g substrate was achieved, which was consistent with the predicted value of 42.13 g/100 g substrate. Compared with the one‐factor‐at‐a‐time experiments, there was a 9.4 % increase in reducing sugar yield when the enzyme concentration was decreased to 3 FPU/g substrate, the substrate concentration increased to 17 g/L and the reaction time dropped to 22 h. The total sugar released from the two stages was 62.81 g/100 g substrate.  相似文献   

14.
The effects of CH3COOH and Na2SO3 pretreatment on the structural properties and hydrolyzability of fast-growing Paulownia elongate were investigated. Acetic acid increased cellulose’s crystallinity and hydrolyzability when combined with alkaline sodium sulfite and sodium hydroxide. The cellulose content increased by 21%, the lignin content decreased by 6%, and the product showed better enzymatic digestibility. With a cellulase dose of 30 FPU/g DM, after 72 h hydrolysis, the hydrolysis yields of glucose and xylose were 78% and 83%, respectively, which were 51% and 69% higher than those of untreated materials. When the enzyme dosage was 20 FPU/g DM, after 72 h hydrolysis, the hydrolysis yields of glucose and xylose were 74% and 79%, respectively. The high hydrolyzability, low enzyme loading, and high hydrolysis yield demonstrate the potential of the proposed system for producing platform sugars from fast-growing Paulownia elongate.  相似文献   

15.
BACKGROUND: The organosolv pretreatment followed by enzymatic hydrolysis of the pretreated material and subsequent fermentation of the hydrolysate produced, was the strategy used for ethanol production from sugarcane bagasse. The effect of different operational variables affecting the pretreatment (the catalyst type and its concentration, and the pretreatment time) and enzymatic hydrolysis stage (substrate concentration, cellulase loading, addition of xylanase and Tween 20, and the cellulase/β‐glucosidase ratio), were investigated. RESULTS: The best values of glucose concentration (28.8 g L?1) and yield (25.1 g per 100 g dry matter) were obtained when the material was pretreated with 1.25% (w/w) H2SO4 for 60 min, and subsequently hydrolyzed using 10% (w/v) substrate concentration in a reaction medium supplemented with xylanase (300 UI g?1) and Tween 20 (2.5% w/w). Fermentation of the broth obtained under these optimum conditions by Saccharomyces cerevisiae resulted in an ethanol yield of 92.8% based on the theoretical yield, after 24 h. CONCLUSION: Organosolv pretreatment of sugarcane bagasse under soft conditions, and subsequent enzymatic hydrolysis of the pretreated material with a cellulolytic system supplemented with xylanase and Tween 20, is a suitable procedure to obtain a glucose rich hydrolysate efficiently fermentable to ethanol by Sacharomyces cerevisiae yeasts. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Ethanol‐based organosolv fractionation of lignocellulosic biomass is an effective pretreatment technology for enzymatic cellulose hydrolysis to produce sugars and lignin within a biorefinery. This study focuses on the catalytic effect of H2SO4, HCl, and MgCl2 on organosolv pretreatment of willow wood and wheat straw. RESULTS: The use of catalysts improved fractionation of both feedstocks. The maximum enzymatic cellulose digestibility obtained was 87% for willow wood (using 0.01 mol L?1 H2SO4 as catalyst) and 99% for wheat straw (0.02 mol L?1 HCl). Non‐catalytic organosolv fractionation at identical conditions resulted in 74% (willow wood) and 44% (wheat straw) glucose yield by enzymatic hydrolysis. Application of catalysts in organosolv pretreatment was particularly effective for wheat straw. The influence of the acid catalysts was found to be primarily due to their effect on the pH of the organosolv liquor. Acid catalysts particularly promoted xylan hydrolysis. MgCl2 was less effective than the acid catalysts, but it seemed to more selectively improve delignification of willow wood. CONCLUSION: Application of catalysts in organosolv pretreatment of willow wood and wheat straw was found to substantially improve fractionation and enzymatic digestibility. The use of catalysts can contribute to achieving maximum utilization of lignocellulosic biomass in organosolv‐based biorefineries. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
A three-stage process containing phosphoric acid pretreatment, enzymatic hydrolysis, and membrane filtration was performed on waste paper as a lignocellulosic material. In the first two stages, the effect of phosphoric acid concentration, enzyme loading, hydrolysis time, and substrate concentration on the amount of products was investigated. At the third stage using a proper membrane, the effect of substrate concentration and transmembrane pressure (TMP) on yield of the reducing sugars was studied. The novelty of the present study was to demonstrate the application of ultrafiltration membrane on the enzymatic hydrolysis process of waste paper. The reducing sugars concentration was determined by using the 3,5-dinitrosalicylic acid (DNS) reagent method. According to the results, a value of 0.5% was determined as the optimum concentration for phosphoric acid in the pretreatment stage. The reducing sugars yield was obtained as 67.4% in this concentration. Moreover, for the enzymatic hydrolysis of waste paper, the suitable amounts of cellulase enzyme loading and hydrolysis time were determined as 50 mg/g substrate and 48 h, respectively. In the filtration stage, increase of substrate concentration and decrease of TMP resulted in higher rejection of the reducing sugars. The experimental results revealed that the highest rejection was 19.2% at TMP of 3 bar and substrate concentration of 100 g/L.  相似文献   

18.
BACKGROUND: The oversupply of cheap glycerol by the oleochemicals industry together with problems occurring in low‐boiling‐point organosolv pretreatments, has generated an interest in the use of glycerol in the organosolv pretreatment of lignocellulosic biomass. Atmospheric aqueous glycerol autocatalytic organosolv pretreatment (AAGAOP) is a promising strategy that can effectively enhance enzymatic hydrolysis of lignocellulosic biomass. As a cost‐effective technique, steam explosion pretreatment (SEP) is being adopted in industrial applications. Accordingly, work has been carried out to investigate how AAGAOP enhanced enzymatic hydrolysis of lignocellulosic biomass compares with the SEP method. RESULTS: Under controlled laboratory conditions, based on ≥ 90% cellulose recovery, AAGAOP removed ≥ 60% hemicellulose and ≥ 60% lignin from wheat straw while SEP led to ~80% hemicellulose and 10% lignin removal. Enzymatic hydrolysis yields of AAGAOP and SEP reached ~90% and ~70%, respectively. Physical‐chemical structural characterization by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT‐IR), helped explain the above results. The two methods gave priority to dissociating the guaiacyl lignin and had a relatively small effect on syringyl units. However, AAGAOP exhibited a superior performance. CONCLUSION: The two methods enhanced the enzymatic hydrolysis of lignocellulosic biomass by removing and/or altering physical‐chemical structural impediments. The AAGAOP technique, with some special advantages, was more effective than SEP in enhancing the recovery and enzymatic digestibility of cellulose. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号