首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Films of poly(3,4‐ethylenedioxythiophene) were prepared with single and multiple electropolymerization steps, where the numbers of polymerization steps (n's) were 3, 5, and 7, with identical experimental conditions and total polymerization times (τ's). The electroactivity of the films prepared with multiple steps remained almost unaltered when n increased, with the ability of the films to store charge with n > 3 being smaller than that of the films with similar thicknesses but derived from a single electrodeposition step. In contrast, the stability of the films produced with n polymerization steps was significantly higher than that of the films derived from a single step with the same τ, with the difference between the two systems increasing with n, that is, τ used to yield the films. On the other hand, although the morphological and topological characteristics of the surface and the electrical conductivity were affected by the procedure used to produce the films, the organization of the polymer molecules in the crystalline phase, the thermal stability, and the electronic properties (ionization potential, electron affinity, and lowest π–π* transition energy) were practically identical in both cases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Poly(2‐chloromethyl‐2,3‐dihydrothieno[3,4‐b][1,4]dioxine), a chloromethyl functionalized poly(3,4‐ethylenedioxythiophene) derivative (PEDOT‐MeCl), was synthesized electrochemically via the potentiostatic polymerization of its monomer in dichloromethane solution containing suitable tetrabutylammonium tetrafluoroborate, then it was used for the characterization of film properties and the fabrication of electrochemical sensor. The properties of the resulting PEDOT‐MeCl film were characterized by different methods such as cyclic voltammetry, electrochemical impedance spectroscopy, Fourier transform infrared and ultraviolet–visible techniques, scanning electron microscope, and thermogravimetric analysis. The PEDOT‐MeCl film displayed a good reversible redox activity, remarkable capacitance properties, good thermal stability, rough, and porous structure, especially fluorescent spectra indicated that PEDOT‐MeCl was a blue‐emitter with maximum emission centered at 396 and 398 nm. Finally, the PEDOT‐MeCl film was employed for the fabrication of the sensing electrode, and dopamine was chosen as a model analyte for the application of the electrochemical sensor. Results indicated that the PEDOT‐MeCl film as sensing interface was feasible, and studies of these film properties were very beneficial for studying properties and applications of other poly(3,4‐ethylenedioxythiophene) derivative films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2660–2670, 2013  相似文献   

3.
A high cycling stability material and an additive manufacturing method are reported for the fabrication of solid electrochromic devices. The poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/multi‐walled carbon nanotube (PEDOT:PSS/MWCNT) nanocomposites were synthesized via in situ polymerization. A carboxymethyl cellulose gel was used as the ink vehicle for screen printing. The electrochromic (EC) performance of films patterned by screen printing was also examined. The results of characterization indicate that strong interfacial interactions occurred between PEDOT:PSS and the MWCNTs and the MWCNTs formed a network in these conducting polymers film, so the composite was more conductive than pure PEDOT:PSS. Devices containing PEDOT:PSS/MWCNTs were more stable after 1000 cycles, exhibited higher rate of ion exchange and faster increases in current. The composite containing 0.3 wt % MWCNTs also had a 23% higher color contrast (ΔE*) than pure PEDOT:PSS at 2.5 V applied voltages. The EC inks with well printability not only can be used to print large area films, but also can print fine lines and pixel‐type dots in displays. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45943.  相似文献   

4.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) doped with a series of anionic polysaccharides such as carboxymethyl cellulose, sodium hyaluronate, xanthan gum, pectin, gellan gum were prepared by electropolymerization in aqueous solutions. Some other dopants of potassium nitrate, potassium sulfate, sodium poly(styrenesulfonate), and sodium polyacrylate were used in comparison with the anionic polysaccharides. The electrochemical properties and stability of the obtained PEDOT films were also investigated. It was found that indium tin oxide (ITO) conductive glass could be used as the working electrode of the electropolymerization of EDOT and that the dopant had a great influence on polymerization potential and overoxidation potential. These charged biomolecules of anionic polysaccharides were found to facilitate electropolymerization of EDOT instead of common doping anions as counterion. The electroactive PEDOT films doped with anionic polysaccharides showed stable electrochemical properties, good texture, and adhesion properties to the ITO conductive glass. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
An analogue of disubstituted 3,4‐propylenedioxythiophenes, namely 3,3‐bis(cyclohexylmethyl)‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin (ProDOT‐CycHex2), was synthesized and its electrochemical polymerization was carried out successfully in an electrolyte solution of 0.1 M tetrabutylammonium hexafluorophosphate dissolved in a mixture of acetonitrile and dichloromethane (3/1: v/v). The corresponding polymer called PProDOT‐CycHex2 has a reduced band gap of 1.85 eV and an electrochromic property: blue/violet when neutralized and highly transparent when oxidized. Also, PProDOT‐CycHex2 film exhibited faster response time (0.7 s) and higher coloration efficiency (769 cm2/C) during oxidation when compared to its benzyl substituted analogue. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46214.  相似文献   

6.
Three 3,4‐ethylenedioxythiophene (EDOT) derivatives, including an EDOT‐tetrathiafulvalene (TTF) derivative, were synthesized by Steglich esterification of carboxylic acids with hydroxymethyl EDOT (3,4‐ethylenedioxythiophene methanol). The UV spectra showed that there was no distinctive intramolecular interaction for the EDOT–TTF monomer between the EDOT and the TTF moieties in the ground state; however, the cyclic voltammetry responses implied that such intramolecular interaction occurred. Electropolymerization in excessive potential could bring in strong overoxidation effects and degradation in the polymer film. The polymers were simulated using density functional theory with Gaussian03 package and the optimized HOMO and LUMO state were figured out. The conductivity of TTF‐polymer was 6 S·cm?1 obtained by galvano station and 4.8 × 10?3 S·cm?1 obtained by potentiostatic electropolymerization after doping with 7,7,8,8‐tetracyanoquinodimethane. The results indicated that this polymer was a reasonable candidate for conducting materials and it was meaningful to increase the conductive dimensions of TTF polymers by chemical doping. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
In this study, we prepared poly(3,4‐ethylenedioxythiophene) (PEDOT) via the chemical oxidation of the 3,4‐ethylenedioxythiophene monomer in a system consisting of miscible binary organic solvents, that is, acetonitrile (CH3CN) and chloroform (CHCl3). This successful technique was then used to synthesize a poly(3,4‐ethylenedioxythiophene) (PEDOT)/silver (Ag) nanocomposite as well. In this facile and efficient technique, a higher solubility of the oxidizing reagent, which originated from a relative enhancement in the polarity of the reaction medium, led to significant changes in the optical and thermal behaviors of the resulting products. To investigate the degree of validity of the technique applied, a pure sample of PEDOT (PEDOT I) was also synthesized with CHCl3 alone, and this was then compared with a sample prepared in CH3CN/CHCl3 binary solvents (PEDOT II). To prepare the PEDOT/Ag nanocomposite, first the PEDOT synthesized in binary solvents was thoroughly dissolved in a dimethyl sulfoxide solvent. Next, Ag nanopowder was uniformly dispersed in the previous solution of PEDOT with sonication. The PEDOT/Ag nanocomposite was then precipitated through the addition of a methanol nonsolvent. The approximate size of nano‐Ag within the polymer matrix was found to be about 40 nm. Scanning electron microscopy images of the pure PEDOT II and PEDOT/Ag nanocomposite exhibited an agglomerated sponge and nanospherical homogeneity, respectively. In comparison with PEDOT I, considerable redshifts in the ultraviolet–visible absorption spectra of the pure PEDOT II and PEDOT/Ag nanocomposite were observed. In addition, the thermostability order was found to be PEDOT/Ag > PEDOT II > PEDOT I at all temperatures above 300°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2707–2712, 2013  相似文献   

8.
Poly(3,4‐ethylene dioxythiophene) (PEDOT) and graphite oxide (GO)/PEDOT composites (GPTs) doped with poly(sodium styrene sulfate) (PSS) were synthesized by in situ polymerization in aqueous media. The electrochemical capacitance performances of GO, PEDOT–PSS, and GPTs as electrode materials were investigated. The GPTs had a higher specific capacitance of 108 F/g than either composite constituent (11 F/g for GO and 87 F/g for PEDOT–PSS); this was attributable to its high electrical conductivity and the layer‐within/on‐layer composite structure. Such an increase demonstrated that the synergistic combination of GO and PEDOT–PSS had advantages over the sum of the individual components. On the basis of cycle‐life tests, the capacitance retention of about 78% for the GPTs compared with that of 66% for PEDOT–PSS after 1200 cycles suggested a high cycle stability of the GPTs and its potential as an electrode material for supercapacitor applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In this study, the effect of solvents on the morphology and conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) nanofibers is investigated. Conductive PEDOT:PSS nanofibers are electrospun by dissolving a fiber‐forming polymer, polyvinyl alcohol, in an aqueous dispersion of PEDOT:PSS. The conductivity of PEDOT:PSS nanofibers is enhanced 15‐fold by addition of DMSO and almost 30‐fold by addition of ethylene glycol to the spinning dopes. This improvement is attributed to the change in the conformation of the PEDOT chains from the coiled benzoid to the extended coil quinoid structure as confirmed by Raman spectroscopy, X‐ray diffraction, and differential scanning calorimetry. Scanning electron microscopy images show that less beady and more uniform fiber morphology could be obtained by incorporation of ethylene glycol in the spinning dopes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40305.  相似文献   

10.
Poly(2‐iodoaniline) (PIANI) and poly(aniline‐co‐2‐iodoaniline) [P(An‐co‐2‐IAn)] were synthesized by electrochemical methods in acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) and perchloric acid (HClO4). The voltametry of the copolymer shows characteristics similar to those of conventional polyaniline (PANI), and it exhibits higher dry electrical conductivity than PIANI and lower than PANI. The observed decrease in the conductivity of the copolymer relative to PANI is attributed to the incorporation of the iodine moieties into the PANI chain. The structure and properties of these conducting films were characterized by FTIR and UV‐Vis spectroscopy and by an electrochemical method (cyclic voltametry). Conductivity values, FTIR and UV‐Vis spectra of the PIANI and copolymer were compared with those of PANI and the relative solubility of the PIANI and the copolymer powders was determined in various organic solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1652–1658, 2003  相似文献   

11.
The chemical oxidative copolymerization of 3,4‐ethylenedithiathiophene (EDTT) with 3,4‐ethylenedioxythiophene (EDOT) and 2′‐hydroxymethyl‐3,4‐ethylenedioxythiophene in a poly(styrene sulfonic acid) aqueous solution was successfully carried out to form stable, dark blue colloidal dispersions in water. Coating these dispersions onto polypropylene substrates led to the formation of free‐standing copolymer films. The mechanical, electrical, and thermoelectrical properties of these films were investigated; the films showed superior properties in comparison with those of poly(3,4‐ethylenedithiathiophene) (PEDTT)/poly(styrene sulfonate) (PSS). The copolymer film based on EDTT and EDOT achieved a high electrical conductivity (8.2 × 10?2 S cm?1) at 298 K; this could be improved about 10 times through the addition of dimethyl sulfoxide (DMSO) or DMSO/isopropyl alcohol into the polymer dispersion with almost constant Seebeck coefficients of about 9 μV K?1. On the contrary, these additives had almost no effect on the conductivity of PEDTT/PSS. The structure and morphology of the polymer films were studied by X‐ray diffraction and SEM analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The corrosion‐protection aspects of poly(o‐anisidine) (POA) coatings on mild steel in aqueous 3% NaCl solutions were investigated with electrochemical impedance spectroscopy, a potentiodynamic polarization technique, and open circuit potential measurements. The POA coatings were electrochemically synthesized on mild steel with cyclic voltammetry from an aqueous salicylate medium. The corrosion behavior of the POA coatings was investigated through immersion tests performed in aqueous 3% NaCl solutions, and the recorded electrochemical impedance spectra were fitted with an equivalent circuit to obtain the characteristic impedance parameters. The use of a single equivalent circuit was inadequate to explain the various physical and electrochemical processes occurring at different exposure times. It was suggested that some characteristic element(s) should be incorporated into the equivalent circuit at different stages of the immersion to elucidate the various processes occurring at different exposure times. The evolution of the impedance parameters with the immersion time was studied, and the results showed that POA acted as a protective coating on the mild steel against corrosion in a 3% NaCl solution. From these data, the water uptake and delamination area were determined to further support the corrosion‐protection performance of the POA coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Electroconductive papers were produced by coating commercial base papers with blends of poly(3,4‐ethylenedioxythiophene)/poly(4‐styrenesulfonate) (PEDOT:PSS) and organic solvents. The bulk conductivities of the coated papers were measured using a four‐probe technique. One‐sided and two‐sided coating gave comparable conductivity levels. The presence of sorbitol and isopropanol in the PEDOT:PSS blends did not enhance the bulk conductivity of the coated paper, and with increasing concentrations of these solvents, the conductivity decreased due to dilution of the conducting component. Samples coated with PEDOT:PSS blends containing N‐methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO) exhibited a higher conductivity than those coated with pure PEDOT:PSS because of their plasticizing effect and conformational changes of PEDOT molecules indicated by the red shift and disappearance of the shoulder peak at about 1442 cm?1 in the Raman spectra of the coated samples. EDS imaging showed that PEDOT:PSS is distributed throughout the thickness direction of the paper. Contact angle measurements were made to monitor the hydrophilicity of the paper surface and total sulfur analysis was used to determine the amount of PEDOT:PSS deposited onto the paper. The tensile strength of all the paper samples increased slightly after treatment. Thus, it is demonstrated that enhanced bulk conductivity in the order of 10?3 S/cm can be achieved by using organic conductive materials and surface treatment techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

15.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) nanoparticles were prepared via a miniemulsion polymerization process. The chemical oxidative polymerization of 3,4‐ethylenedioxythiophene (EDOT) occurred in the presence of β‐1,3‐glucan with the injection of an aqueous oxidant solution, and the nanodroplets of EDOT were transformed to PEDOT nanoparticles dispersed in the aqueous medium. The aqueous emulsion of PEDOT nanoparticles showed relatively long emulsion stability (> 8 weeks), and the recovered solid nanoparticles were also redispersible in deionized water without deposition. The size and size distribution of PEDOT nanoparticles could be controlled by adjusting the operating conditions of the ultrasonifier before the polymerization process. The building‐up of a shearing force decreases the size of the PEDOT nanoparticles and also causes the occurrence of a multimodal size distribution for the PEDOT nanoparticles. The electrical conductivity of the PEDOT nanoparticles was 0.28–1.20 S cm−1. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) was blended with poly(vinyl alcohol) (PVA) to form 0, 10, 20, 30, 40, and 50 vol % PEDOT–PSS/PVA solutions, and their freestanding films were prepared with a simple and cost‐effective solution casting technique at 27 °C in the absence of additives. Field emission scanning electron microscopy images revealed changes in the cocontinuous network to a rodlike morphology in the composite films from 10 to 50 vol % PEDOT–PSS/PVA. The alternating‐current conductivity was found to obey Jonscher's power law. The obtained values of the dielectric constant at 27 °C were relatively high, and a maximum value of 6.7 × 104 at 100 Hz for 40 vol % PEDOT–PSS'/PVA was observed. The dielectric loss attained a maximum value of about 106 at 100 Hz for 40 vol % PEDOT–PSS/PVA. However, a decrease in the dielectric parameters was observed at 50 vol % PEDOT–PSS/PVA because of locally induced strain in the microstructure. The variations in polarization with respect to the applied electric field (P–E) were determined for 50, 100, and 500 Hz at 500 V for the freestanding composite films of lower concentrations up to 20 vol % PEDOT–PSS/PVA. In summary, the dielectric and P–E measurements confirmed that the electrical characteristics changed in accordance to the contribution from both resistive and capacitive sites in the PEDOT–PSS/PVA composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45079.  相似文献   

17.
The hydrogen bonding between phenolic compounds (phenol (Ph), catechol (Ct), resorcinol (Rs), and hydroquinone (Hq)) is investigated at pH 4. The oxidation behaviors of total phenolic compounds (TotPh) are different from their individual behaviors due to the existence of intermolecular hydrogen‐bonded oligomeric clusters. Theoretical calculations and voltammetric and spectroscopic evidences support the intermolecular hydrogen bonding. The interaction of the phenolic compounds with polyaniline (PANI) and poly(vinylferrocenium) (PVF+) films are also investigated electrochemically and spectroscopically. The phenolic molecules are immobilized in both polymers due to the construction of hydrogen bonds by PANI and the complexation with PVF+. In addition, Ct and Hq are catalytically oxidized by PANI. Determinations of Ct and TotPh are performed on PVF+–PANI composite ‐ coated Pt electrode using amperometric It method. Composite coating exhibits significant electrochemical activity toward Ct and TotPh, with high sensitivity and a wide linearity range. The steady‐state currents versus concentration of Ct and TotPh are found to be linear in the range of 1.35 × 10?3?50.0 mM and 4.10 × 10?4?560 mM for two linear regions, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43596.  相似文献   

18.
A single crystal poly(3,4‐ethylenedioxythiophene) (PEDOT) film with highly oriented arrangement has been fabricated from an aqueous solution by a novel unipolar pulse electropolymerization method. Film formation mechanism was proposed based on the in situ mass change during electropolymerization process measured by the electrochemical quartz crystal microbalance. The compositions, morphology and crystal structure of the fabricated films are characterized by Fourier transfer infrared spectroscopy, scanning electron microscopy, and X‐ray diffraction, respectively. It is found that the prepared PEDOT film on carbon nanotubes (CNTs)‐modified electrode with a spongy dendritic structure possesses outstanding electroactivity, high specific capacitances (239.1 F?g?1, including the specific capacitances of CNTs which is 21.4 F?g?1), and excellent cycling stability with 7.3% decay from its initial capacitance over 10,000 cycles. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43418.  相似文献   

19.
The electropolymerization of 4‐methyl carbazole‐3‐carboxylic acid was successfully performed on a stainless steel (316L) surface with lithium perchlorate/acetonitrile as the supporting electrolyte. The corrosion resistance of the new coating, poly(4‐methyl carbazole‐3‐carboxylic acid) (PCz), was investigated. To this end, potentiodynamic polarization curves, open circuit potentials, and electrochemical impedance spectroscopy were used to evaluate the capacity of the PCz coating to protect the steel surface. The corrosion tests indicated that PCz exhibited effective anodic protection in a corrosive test solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Composite conductive fibers based on poly(3,4‐ethylenedioxythiophene) (PEDOT)–polystyrene sulfonic acid (PSS) blended with polyacrylonitrile (PAN) were prepared via a conventional wet‐spinning process. The influences of the PEDOT–PSS content on the electrical conductivity, thermal stability, and mechanical properties of the composite fibers were investigated. The fibers with 1.83 wt % PEDOT–PSS showed a conductivity of 5.0 S/cm. The breaking strength of the fibers was in the range 0.36–0.60 cN/dtex. The thermal stability of the PEDOT–PSS/PAN composite fibers was similar to but slightly lower than that of the pure PAN. The X‐ray diffraction results revealed that both the pure PAN and PEDOT–PSS/PAN composite fibers were amorphous in phase, and the crystallization of the latter was lower than that of the former. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号