共查询到4条相似文献,搜索用时 15 毫秒
1.
In this study, we focused on the preparation and characterization of poly(ethylene glycol) (PEG)/poly(methyl methacrylate) (PMMA) blends as novel form‐stable phase‐change materials (PCMs) for latent‐heat thermal energy storage (LHTES) applications. In the blends, PEG acted as a PCM when PMMA was operated as supporting material. We subjected the prepared blends at different mass fractions of PEG (50, 60, 70, 80, and 90% w/w) to leakage tests by heating the blends over the melting temperature of the PCM to determine the maximum encapsulation ratio without leakage. The prepared 70/30 w/w % PEG/PMMA blend as a form‐stable PCM was characterized with optical microscopy and Fourier transform infrared spectroscopy. The thermal properties of the form‐stable PCM were measured with differential scanning calorimetry (DSC). DSC analysis indicated that the form‐stable PEG/PMMA blend melted at 58.07°C and crystallized at 39.28°C and that it had latent heats of 121.24 and 108.36 J/g for melting and crystallization, respectively. These thermal properties give the PCMs potential LHTES purposes, such as for solar space heating and ventilating applications in buildings. Accelerated thermal cycling tests also showed that the form‐stable PEG/PMMA blend as PCMs had good thermal reliability and chemical stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
2.
This work is focused on the preparation, characterization, and determination of thermal energy storage properties of poly(n‐butyl methacrylate) (PnBMA)/fatty acid composites as form‐stable phase change material (PCM). In the composite materials, the fatty acids act as latent heat storage material whereas PnBMA serves as supporting material, which prevents the leakage of the melted fatty acids. The maximum encapsulation ratio for all fatty acids was found to be 40 wt%. The composites that do not allow PCM leakage in melted state were identified as form‐stable PCMs. The compatibility of fatty acids with PnBMA is investigated by optical microscopy (OM) and Fourier Transform Infrared (FT‐IR) spectroscopy. Thermal properties and thermal reliability of the form‐stable composite PCMs were determined using differential scanning calorimetry (DSC). DSC analysis revealed that the form‐stable composite PCMs had melting temperatures between 29.62°C and 53.73°C and latent heat values between 67.23 J/g and 87.34 J/g. Thermal stability of the composite PCMs was studied by thermal gravimetric (TG) analysis and the results indicated that the form‐stable PCMs had good thermal stability. In addition, thermal cycling test showed that the composite PCMs had good thermal reliability with respect to the changes in their thermal properties after accelerated 5,000 thermal cycling. On the basis of all results, it was also concluded that the prepared form‐stable composite PCMs had important potential for many thermal energy storage applications such as solar space heating of buildings by using wallboard, plasterboard or floors integrated with PCM. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers 相似文献
3.
The hydrogen bonding and miscibility behaviors of poly(styrene‐co‐methacrylic acid) (PSMA20) containing 20% of methacrylic acid with copolymers of poly(styrene‐co‐4‐vinylpyridine) (PS4VP) containing 5, 15, 30, 40, and 50%, respectively, of 4‐vinylpyridine were investigated by differential scanning calorimetry, thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). It was shown that all the blends have a single glass transition over the entire composition range. The obtained Tgs of PSMA20/PS4VP blends containing an excess amount of PS4VP, above 15% of 4VP in the copolymer, were found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are able to form interpolymer complexes. The FTIR study reveals presence of intermolecular hydrogen‐bonding interaction between vinylpyridine nitrogen atom and the hydroxyl of MMA group and intensifies when the amount of 4VP is increased in PS4VP copolymers. A new band characterizing these interactions at 1724 cm−1 was observed. In addition, the quantitative FTIR study carried out for PSMA20/PS4VP blends was also performed for the methacrylic acid and 4‐vinylpyridine functional groups. The TGA study confirmed that the thermal stability of these blends was clearly improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
A series of poly(2‐alkyloyloxyethylacrylate) and poly(2‐alkyloyloxyethylacrylate‐co‐methylacrylate) polymers as novel polymeric phase‐change materials (PCMs) were synthesized starting from 2‐hydroxyethylacrylate and fatty acids. The chemical structure and crystalline morphology of the synthesized copolymers were characterized with Fourier transform infrared and 1H‐NMR spectroscopy and polarized optical microscopy, respectively, and their thermal energy storage properties and thermal stability were investigated with differential scanning calorimetry and thermogravimetric analysis, respectively. The thermal conductivities of the PCMs were also measured with a thermal property analyzer. Moreover, thermal cycling testing showed that the copolymers had good thermal reliability and chemical stability after they were subjected to 1000 heating/cooling cycles. The synthesized poly(2‐alkyloyloxyethylacrylate) polymers and poly(2‐alkyloyloxyethylacrylate‐co‐methylacrylate) copolymers as novel PCMs have considerable potential for thermal energy storage and temperature‐control applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献