首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxation kinetics of the epoxy network diglycidyl ether of bisphenol A (n = 0) and m‐xylylenediamine were studied with differential scanning calorimetry experimental data with a shift peak model. Nonlinear parameters were calculated with aging experiments. The nonexponential parameter and the apparent activation energy were found from intrinsic cycles. Adam–Gibbs theory was used to provide a molecular interpretation based on the enthalpy relaxation. Different assumptions of the variation of specific heat capacity (cp) were used to determine the macroscopic molar configurational entropy of the system. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2003–2008, 2005  相似文献   

2.
The study of the cure reaction of a diglycidyl ether of bisphenol A epoxy network with isophorone diamine is interesting for evaluating the industrial behavior of this material. The total enthalpy of reaction, the glass‐transition temperature, and the partial enthalpies at different curing temperatures have been determined with differential scanning calorimetry in dynamic and isothermal modes. With these experimental data, the degree of conversion and the reaction rate have been obtained. A kinetic model introduces the mechanisms occurring during an epoxy chemical cure reaction. A modification of the kinetic model accounting for the influence of the diffusion of the reactive groups at high conversions is used. A thermodynamic study has allowed the calculation of the enthalpy, entropy, and Gibbs free energy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
4.
In this research, a new thermal curing system, with two‐stage curing characteristics, has been designed. And the reaction behaviors of two different curing processes have been systematically studied. The non‐isothermal differential scanning calorimetry (DSC) test is used to discuss the curing reaction of two stages curing, and the data obtained from the curves are used to calculate the kinetic parameters. Kissinger‐Akahira‐Sunose (KAS) method is applied to determine activation energy (Ea) and investigate it as the change of conversion (α). Málek method is used to unravel the curing reaction mechanism. The results indicate that the curing behaviors of two different curing stages can be implemented successfully, and curing behavior is accorded with ?esták‐Berggren mode. The non‐isothermal DSC and Fourier transform infrared spectroscopy test results reveal that two different curing stages can be implemented successfully. Furthermore, the double x fitting method is used to determine the pre‐exponential factor (A), reaction order (m, n), and establish the kinetic equation. The fitting results between experiment curves and simulative curves prove that the kinetic equation can commendably describe the two different curing reaction processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40711.  相似文献   

5.
In this article, the curing kinetics of two fast cure flip-chip epoxy encapsulants under both isothermal and nonisothermal conditions are investigated by differential scanning calorimetry. The method allows determination of the most suitable kinetic model and corresponding parameters. The kinetic analysis suggests that the two-parameter autocatalytic model is more appropriate to describe the kinetics of the curing reaction. There are certain differences between the kinetic data from isothermal and that from nonisothermal measurements. The apparent activation energy Ea and pre-exponential factor A of E-AB1 determined from nonisothermal experiments were higher than the isothermal values, whereas the Ea and A of E-RV2 determined from both methods are relatively close. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1501–1508, 1999  相似文献   

6.
A mixture of diglycidylether of bisphenol A (DGEBA) and γ‐butyrolactone (γ‐BL) was cured in the presence of ytterbium triflate as a catalyst. The kinetics of the various elemental processes that occur in the curing process were studied by means of isothermal curing in the FTIR spectrometer. The kinetics of the contraction during the curing was also evaluated by TMA. In both cases, the kinetics was analyzed by means of isoconversional procedure and the kinetic model was determined with the so‐called compensation effect (isokinetic relationship). The isothermal kinetic analysis was compared with that obtained by dynamic curing in DSC. We found that all the reactive processes and the contraction follow a surface‐controlled reaction type of kinetic mechanism, R3. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 381–393, 2004  相似文献   

7.
The effect of an octadecylammonium‐exchanged montmorillonite on the curing kinetics of a thermoset system based on a bisphenol A epoxy resin and a poly(oxypropylene)diamine curing agent were studied with differential scanning calorimetry (DSC) in isothermal and dynamic (constant‐heating‐rate) conditions. Montmorillonite and the prepared composites were characterized by X‐ray diffraction analysis and simultaneous DSC and thermogravimetric analysis. The analysis of the DSC data indicated that the intercalated octadecylammonium cations catalyzed the epoxy–amine polymerization. A kinetic model, arising from an autocatalyzed reaction mechanism, was applied to the DSC data. Fairly good agreement between the experimental data and the modeling data was obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1765–1771, 2006  相似文献   

8.
The copolymerization of four dental dimethacrylates initiated by a benzoyl peroxide/4-N,N-dimethylamino phenethyl alcohol redox system at 37°C was studied with differential scanning calorimetry. The studied dimethacrylates were viscous bisphenol A glycidyl dimethacrylate (Bis-GMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and urethane dimethacrylate (UDMA), which were characterized as base monomers, and low-viscosity triethylene glycol dimethacrylate (TEGDMA), which was characterized as a diluent. Also, three series of dimethacrylate copolymers were prepared by incremental additions (12.5 wt %) of TEGDMA to a base comonomer (Bis-GMA, UDMA or Bis-EMA). The maximum rate of homopolymerization of the dimethacrylates followed the order of Bis-GMA > UDMA > TEGDMA > Bis-EMA, and the final degree of conversion of the corresponding homopolymers followed the order of TEGDMA > UDMA > Bis-EMA > Bis-GMA. A reaction–diffusion-controlled termination region was clear in all monomers and started earlier in bulky and rigid Bis-GMA and Bis-EMA (followed by the more flexible UDMA and TEGDMA) but lasted longer in the Bis-EMA polymerization. The maximum rate of copolymerization and degree of conversion of copolymers of a base monomer with TEGDMA changed monotonically with an increase in the TEGDMA content in the initial comonomer mixture. A synergistic effect was clear only in the final double-bond conversion of Bis-GMA/TEGDMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Optimal designs have been constructed for differential scanning calorimetry (DSC) experiments conducted under constant‐heating‐rate conditions for materials that are a priori assumed to follow nth‐order kinetics. Two different operating scenarios are considered, including single‐scan and multiscan DSC experiments for eight different kinetic parameter combinations representing a range of typical polymeric curing reactions. The resulting designs are studied to determine which kinetic model parameters are influential in determining the optimal design. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Epoxy resins, 4, 4′‐diglycidyl (3, 3′, 5, 5′‐tetramethylbiphenyl) epoxy resin (TMBP) containing rigid rod structure as a class of high performance polymers has been researched. The investigation of cure kinetics of TMBP and diglycidyl ether of bisphenol‐A epoxy resin (DGEBA) cured with p‐phenylenediamine (PDA) was performed by differential scanning calorimeter using an isoconversional method with dynamic conditions. The effect of the molar ratios of TMBP to PDA on the cure reaction kinetics was studied. The results showed that the curing of epoxy resins contains different stages. The activation energy was dependent of the degree of conversion. At the early of curing stages, the activation energy showed the activation energy took as maximum value. The effects of rigid rod groups and molar ratios of TMBP to PDA for the thermal properties were investigated by the DSC, DMA and TGA. The cured 2/1 TMBP/PDA system with rigid rod groups and high crosslink density had shown highest Tg and thermal degradation temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
The curing behavior of synthesized phenol–urea–formaldehyde (PUF) resol resins with various formaldehyde/urea/phenol ratios was studied with differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The results indicated that the synthesis parameters, including the urea content, formaldehyde/phenol ratio, and pH value, had a combined effect on the curing behavior. The pH value played an important role in affecting the shape of the DSC curing curves, the activation energy, and the reaction rate constant. Depending on the pH value, one or two peaks could appear in the DSC curve. The activation energy was lower when pH was below 11. The reaction rate constant increased with an increase in the pH value at both low and high temperatures. The urea content and formaldehyde/phenol ratio had no significant influence on the activation energy and rate constant. DMA showed that both the gel point and tan δ peak temperature (Ttanδ) had the lowest values in the mid‐pH range for the PUF resins. A different trend was observed for the phenol–formaldehyde resin without the urea component. Instead, the gel point and Ttanδ decreased monotonically with an increase in the pH value. For the PUF resins, a high urea content or a low formaldehyde/phenol ratio resulted in a high gel point. The effect of the urea content on Ttanδ was bigger than that on the gel point because of the reversible reaction associated with the urea component. Too much formaldehyde could lead to more reversible reactions and a higher Ttanδ value. The effects of the synthesis conditions on the rigidity of the cured network were complex for the PUF resins. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1368–1375, 2005  相似文献   

12.
A finite element method algorithm for epoxy curing degree simulation was developed in Abaqus by integrating the discretized analytical solution of the model free kinetics into its user subroutines. This method was verified by nonisothermal and isothermal DSC experiments of an epoxy resin. By means of this method, the real manufacturing press cycle could be simulated regarding temperature distribution and curing degree with advanced curing degree‐dependent material properties. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46408.  相似文献   

13.
The curing behavior of two kinds of commercial powdered resol phenolic resins was studied by differential scanning calorimetry. Liquid‐state 13C‐NMR spectroscopy was used to aid in understanding the curing behavior by detecting the structure of powdered resins. The reaction mechanism was interpreted with the dependency of activation energy on the degree of conversion. The results indicate that there are differences in the curing mechanism between core and face phenolic resins. The curing process of core resin was faster than that of face resin at the same reaction temperature. The water added in the curing system played an important role of plasticizer or diluent according to different curing stages and water content. In the initial curing stage, water mainly diluted the system and retarded the curing reactions. However, at the higher degrees of conversion, water played the role of plasticizer to decrease the effect of diffusion on the curing reactions to make the curing reactions more complete. The excess water added in the curing system played the role of diluent at almost all stages during the curing process. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1371–1378, 2003  相似文献   

14.
The most common commercial processes for manufacturing prepregs for electronic applications use solvent‐based resin systems. Solvents are not environmentally friendly and contribute to voids in prepregs and laminates. The resin impregnation process is performed in an open resin bath. This low‐pressure impregnation is conducive to voids in prepregs. Voids cause product variability, which is a major source of scrap in board shops. To eliminate these drawbacks, a solventless process, based on the concept of injection pultrusion, has been developed. The impregnation is performed in a die under pressure to minimize voids. In previous work, chemorheological and kinetic measurements were used to identify a potential epoxy‐based resin system. In addition, flow visualization with model fluids was used to establish the basic flow mechanism. Here we use the previous results to develop a mathematical model for the B‐staging process. A prototype B‐staging die has been built and used to verify the mathematical model. The results show that the model agrees well with the experimental data for low pulling speeds and slightly underpredicts the runs at high pulling speeds. The properties of the prepregs, the dielectric constant (DK) and dielectric loss (DF), have also been measured in this research. The measurements show that the solventless prepregs have acceptable DK and DF values according to the Institute for Printed Circuits FR‐4 designation (a permittivity and tangent loss standard). A microscope has been used to observe the void contents of the prepregs. The solventless prepregs have been compared against standard FR‐4 prepregs and shown qualitatively to have fewer voids. Based on the mathematical model, two potential process alternatives for the manufacture of solventless prepregs have been developed and analyzed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1136–1146, 2004  相似文献   

15.
The isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly(decamethylene terephthalamide) (PA‐10T) was studied by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization process. The commonly used Avrami equation and the one modified by Jeziorny were used, respectively, to describe the primary stage of isothermal and nonisothermal crystallization. The Avrami exponent n was evaluated to be in the range of 2.36–2.67 for isothermal crystallization, and of 3.05–5.34 for nonisothermal crystallization. The Ozawa analysis failed to describe the nonisothermal crystallization behavior, whereas the Mo–Liu equation, a combination equation of Avrami and Ozawa formulas, successfully described the nonisothermal crystallization kinetics. In addition, the value of crystallization rate coefficient under nonisothermal crystallization conditions was calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 819–826, 2004  相似文献   

16.
The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/dibutyl phthalate (DBP)/di(2‐ethylhexyl)phthalate (DEHP) blends via thermally induced phase separation were investigated through differential scanning calorimetry measurements. The Ozawa approach failed to describe the crystallization behavior of PVDF in PVDF/DBP/DEHP blends, whereas the modified Avrami equation successfully described the nonisothermal crystallization process of PVDF. Two stages of crystallization were observed in this analysis, including primary crystallization and secondary crystallization. The influence of the cooling rate and DBP ratio in the diluent mixture on the crystallization mechanism and crystal structure was determined by this method. The Mo approach well explained the kinetics of primary crystallization. An analysis of these two methods indicated that the increase in the DBP ratio in the diluent mixture caused a decrease in the crystallization rate at the primary crystallization stage. The activation energy was determined according to the Kissinger method and also decreased with the DBP ratio in the diluent mixture increasing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to detect and simulate the cure behavior of unsaturated polyester (UP), phenol, and UP/phenol blends and to calculate and predict the cure rate, cure temperature, conversion, and changes in the glass‐transition temperature along with various cure orders in order to obtain the optimum parameters for processing. With dynamic scanning and isothermal DSC procedures and Borchardt–Daniels dynamic software, cure data for the UP resin were obtained, 90% of the conversion rate at 100°C being achieved after 15 min. However, for the phenol and UP/phenol blends, gradually increasing the temperature was found to be best for curing according to the DSC and DMA test results. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1041–1058, 2004  相似文献   

18.
Effect of wood on the curing behavior of commercial phenolic resin systems   总被引:1,自引:0,他引:1  
Differential scanning calorimetry (DSC) was used to study the effect of wood on the curing behavior of two types of commercial oriented‐strand‐board phenolic resins. DSC analysis showed that the curing behavior of the core resin differed significantly from that of the face resin in terms of the peak shape, peak temperature, and activation energy. The addition of wood to the resins moved the two separated peaks in the DSC curves of the core resin adjacent to each other. It also accelerated the addition reactions in the curing processes of both the core and face resins. The two peaks in the DSC curves were the result of the high pH values of the resins. These two peaks became either jointed together or overlapped when the pH value of the resin was reduced. Wood also reduced the activation energies for both the core and face resins by decreasing the pH values of the curing systems. Moreover, the effects of wood on the curing behavior of the resins among the five species studied were similar. The lowest activation energy for a phenolic resin probably appeared at pH 10–11 under alkaline conditions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 185–192, 2005  相似文献   

19.
This article is focused on the following of the cure of an epoxy resin by high‐performance liquid chromatography (HPLC) and the comparison of the data obtained with those obtained by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques usually employed for characterize curing processes. A reversed‐phase HPLC method with UV detection is developed to study the kinetic of the curing reaction of diglycidyl ether of bisphenol A (DGEBA) with 1,3‐cyclohexanebismethylamine (1,3‐BAC) at 60, 70, and 80°C, before and after gelation. The limits of quantification obtained permit the application of the proposed method until the last steps of the formation kinetic. HPLC and DSC analysis show a good correlation. The gel conversions obtained by HPLC and DMA agree well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 497–504, 2003  相似文献   

20.
A bisphenol A type novolac resin (Bis‐ANR) was synthesized from bisphenol A and formaldehyde; the resulting novolac was epoxidized to generate a bisphenol A type novolac epoxy resin (Bis‐ANER). The chemical structures of Bis‐ANR and Bis‐ANER were confirmed by 1H‐NMR spectroscopy and IR spectroscopy; the molecular weights and molecular weight distributions were determined by gel permeation chromatography. In addition, the curing process of Bis‐ANER with 4,4′‐diaminodiphenyl sulfone was studied in both dynamic and isothermal modes with differential scanning calorimetry. The dynamic curing kinetic analysis was evaluated with both the Kissinger and Flynn–Wall–Ozawa methods, and the curing activation energy values were obtained. The isothermal curing reaction exhibited autocatalytic behavior, and the curing kinetics were described with the Kamal kinetics model, which accounted for both the autocatalytic and diffusion‐control effects. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 858–868, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号