首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In regenerative medicine, extracellular matrix (ECM)-inspired materials are currently being explored to imitate mechanotransduction pathways and control cell fate. In musculoskeletal tissue regeneration, enhancing mechano-biological signals require biomaterials that are both biocompatible and viscoelastic and can retain water content. Herein, based on these requirements, various polyvinyl alcohol (PVA)-based composite hydrogels, reinforced by polyhydroxy butyrate (PHB) nanofibers, are proposed to differentiate equine adipose-derived stem cells for musculoskeletal regeneration. To study the role of fiber embedding in improving scaffold properties, different nanofiber assemblies, including chopped short ones with random orientation (PVAS), single-layer (PVAL1), and double-layer membranes (PVAL2) are positioned into the PVA matrix. PHB reinforcements negatively affect swelling and positively enhanced phase transition temperatures and crystallinity of PVA hydrogel. According to mechanical analysis results, compositing with PHB nanofibrous layers strengthen the PVA matrix due to some restrictions on PVA chain mobility. Gene expression investigations also reveal that higher matrix stiffness after layering with two PHB membranes (PVAL2) promotes osteogenesis, while the random addition of short-chapped fibers (PVAS) facilitate tenogenic differentiation. As a consequence of the findings, fiber placement is crucial to the mechanical properties of composite hydrogels that ultimately control musculoskeletal differentiation signals through mechanosensing pathways.  相似文献   

2.
Chitosan and poly(vinyl alcohol) (PVA) were used to form a semi‐interpenetrating polymeric network with glutaraldehyde as the cross‐linker. The molecular weight and degree of deacetylation of the chitosan were 612 kDa and 72 %, respectively. The chemical bonds formed by the cross‐linking reaction and transition of these bonds in different pH media were investigated. The gelation property of the chitosan–PVA pregel solution and mechanical properties of the hydrogel were studied. The FTIR spectra of the hydrogel before and after swelling at pH 3 and pH 7 indicated formation of Schiff's base (C?N) and ? NH3+. They also showed pH‐induced transition of C?N to C? N, and ? NH3+ to ? NH2, as well as the instability of the Schiff's base. The chitosan is essential for hydrogel formation through Schiff's base reaction between the amino groups of the chitosan and the aldehyde groups of the glutaraldehyde. The addition of PVA improved the mechanical properties of the hydrogel. However, PVA tends to leach out at longer swelling times in the acidic medium due to hydrolysis of the gel networks, Schiff's base. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Chitosan‐g‐poly(vinyl alcohol) (PVA) copolymers with different grafting percent were prepared by grafting water‐soluble PVA onto chitosan. The drug‐release behavior was studied using the chitosan‐g‐PVA copolymer matrix containing prednisolone in a drug‐delivery system under various conditions. The relationship between the amount of the released drug and the square root of time was linear. From this result, the drug‐release behavior through the chitosan‐g‐PVA copolymer matrix is shown to be consistent with Higuchi's diffusion model. The drug‐release apparent constant (KH) was slightly decreased at pH 1.2, but increased at pH 7.4 and 10 according to the increasing PVA grafting percent. Also, KH was decreased by heat treatment and crosslinking. The drug release behavior of the chitosan‐g‐PVA copolymer matrix was able to be controlled by the PVA grafting percent, heat treatment, or crosslinking and was also less affected by the pH values than was the chitosan matrix. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 458–464, 1999  相似文献   

4.
The oxygen transmission rate, average volume of free‐volume cavities (Vf) and fractional free volume (Fv) of polyamide 6,10 (PA610)/poly(vinyl alcohol) (PVA) (i.e. PA610xPVA05y, PA610xPVA08y and PA610xPVA14y) blend films reduced to minimum values when their PVA contents reached corresponding optimal values. Oxygen transmission rate, Vf and Fv values obtained for optimal PA610xPVAzy blown films were reduced considerably with decreasing PVA degrees of polymerization. The oxygen transmission rate of the optimal bio‐based PA61080PVA0520 blown film was only 2.4 cm3 (m2·day·atm)?1, which is about the same as that of the most often used high‐barrier polymer, ethylene–vinyl alcohol copolymer. Experimental findings from dynamic mechanical analysis, differential scanning calorimetry, wide‐angle X‐ray diffraction and Fourier transform infrared spectroscopy of the PA610xPVAzy blends indicate that PA610 and PVA in the blends are miscible to some extent at the molecular level when the PVA contents are less than or equal to the corresponding optimal values. The considerably enhanced oxygen barrier properties of the PA610xPVAzy blend films with optimized compositions are attributed to the significantly reduced local free‐volume characteristics. © 2017 Society of Chemical Industry  相似文献   

5.
Enzyme hydrolysis with immobilized neutral protease was carried out to produce low molecular weight chitosan (LMWC) and chito‐oligomers. Neutral protease was immobilized on (CS), carboxymethyl chitosan (CMCS), and N‐succinyl chitosan (NSCS) hydrogel beads. The properties of free and immobilized neutral proteases on chitosaneous hydrogel beads were investigated and compared. Immobilization enhanced enzyme stability against changes in pH and temperature. When the three different enzyme supports were compared, the neutral protease immobilized on CS hydrogel beads had the highest thermal stability and storage stability, and the enzyme immobilized on NSCS hydrogel beads had the highest activity compared to those immobilized on the other supports, despite its lower protein loading. Immobilized neutral protease on all the three supports had a higher Km (Michaelis‐Menten constant) than free enzyme. The Vmax (maximum reaction velocity) value of neutral protease immobilized on CS hydrogel beads was lower than the free enzyme, whereas the Vmax values of enzyme immobilized on CMCS and NSCS hydrogel beads were higher than that of the free enzyme. Immobilized neutral protease on CS, CMCS, and NSCS hydrogel beads retained 70.4, 78.2, and 82.5% of its initial activity after 10 batch hydrolytic cycles. The activation energy decreased for the immobilization of neutral protease on chitosaneous hydrogel beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3743–3750, 2006  相似文献   

6.
Poly(vinyl alcohol) (PVA) and poly(N-vinyl pyrrolidone) (PVP) composite hydrogel with interpenetrating polymer networks (IPNs) was prepared by in situ polymerization and compared with pure PVA hydrogel. The prepared IPN hydrogel was characterized by infrared spectroscopy (IR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The mechanical property and cell culture were also tested. The results show that PVP can chemically bond with PVA and form uniform blend hydrogel. The content of PVP can affect the structure, crystallinity, glass transition temperature (Tg), and mechanical property of the hydrogel. The Tg of the PVA hydrogel is 2.7°C while the Tg of the IPN hydrogel is −37°C. The IPN hydrogel has lower glass transition temperature, corresponding to better elastic properties, and has better mechanical performance on stretch and compression than PVA hydrogel. The crystallinity (Xc) of PVA hydrogel and IPN hydrogel is 65.3 and 26.3%, respectively. The DMA curves and XPS analysis suggest that PVA and PVP are well miscible on a molecular level in the IPN hydrogel. The cell proliferation trend demonstrates that the addition of PVP has a positive influence on the cell growth and the IPN hydrogel may be used as a promising biomaterial for artificial cartilage substitute. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Membranes with high strength and elasticity are of great demand in patch therapy. Similar membranes have been developed by combining carboxy-functionalized multiwalled carbon nanotube (c-MWCNT) with different poly(vinyl alcohol) (PVA) as potential diltiazem delivery device through aqueous mixing. High molecular weight PVA (PVAH) produced stronger interaction with c-MWCNT than low molecular weight PVA (PVAL) preferably at low concentration. Positive changes in favor of PVAH in infrared and solid state 13C nuclear magnetic resonance spectroscopy, wide angle X-ray scattering, thermal stability, morphology and dry and wet mechanical properties clearly demonstrate that. Fibrillar c-MWCNT array at 1 wt.% in PVAH (PVAH/1) has drastically improved PVA crystalline cell dimension, tensile strength (201%) and elongation (196%) than neat PVAH whereas the similar improvement is much less (100% and 185%) in PVAL (PVAL/1) due to globular morphology. Instead, c-MWCNT performed better at 0.5 wt.% in PVAL (PVAL/0.5). The kinetic data reflects better encapsulation and slower release by PVAH (5.87%) than PVAL (10.17%) due to greater interfacial interaction.  相似文献   

8.
Although plasticizing materials by modification with small-molecular chemicals has been extensively utilized in the industrial community, processing poly(vinyl alcohol) (PVA) at high concentrations (CPVA) or with a high degree of polymerization (DP) remains challenging. Optimization the plasticizing conditions is one means of addressing this issue. In this study, two types of frequently used plasticizers, glycerol (GLY) and diethanolamine (DEA), are chosen to plasticize PVA resin with a DP of 2400. Both PVA/plasticizer films possess excellent optical transmittance and mechanical ductility, whereas the films blended with DEA exhibit higher strength than the PVA/GLY films. The viscosity variation in the temperature (Top)–CPVA space is monitored by real-time viscous flow testing, demonstrating that DEA is more effective for reducing the viscosity of PVA, which should improve the processability, facilitating film-forming from concentrated solutions. Furthermore, density functional theory calculations and molecular dynamics simulations illustrate that the PVA/DEA system has a lower binding energy, longer hydrogen bond length, and higher isotropic diffusion coefficient, indicating a stable hydrogen bond network and homogenous dispersion of the plasticizer, leading to good solution fluidity and mechanical performance. This study is significant for guiding the design and manufacture of optically transparent, high-performance PVA films as polarizer precursor.  相似文献   

9.
The phosphorylated poly(vinyl alcohol) (P‐PVA) samples with various substitution degrees were prepared through the esterification reaction of PVA and phosphoric acid. By using chitosan (CTS), acrylic acid (AA) and P‐PVA as raw materials, ammonium persulphate (APS) as an initiator and N,N‐methylenebisacrylamide as a crosslinker, the CTS‐g‐PAA/P‐PVA semi‐interpenetrated polymer network (IPN) ssuperabsorbent hydrogel was prepared in aqueous solution by the graft copolymerization of CTS and AA and followed by an interpenetrating and crosslinking of P‐PVA chains. The hydrogel was characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques, and the influence of reaction variables, such as the substitution degree and content of P‐PVA on water absorbency were also investigated. FTIR and DSC results confirmed that PAA had been grafted onto CTS backbone and revealed the existence of phase separation and the formation of semi‐IPN network structure. SEM observations indicate that the incorporation of P‐PVA induced highly porous structure, and P‐PVA was uniformly dispersed in the polymeric network. Swelling results showed that CTS‐g‐PAA/P‐PVA semi‐IPN superabsorbent hydrogel exhibited improved swelling capability (421 g·g?1 in distilled water and 55 g·g?1 in 0.9 wt % NaCl solution) and swelling rate compared with CTS‐g‐PAA/PVA hydrogel (301 g·g?1 in distilled water and 47 g·g?1 in 0.9 wt % NaCl solution) due to the phosphorylation of PVA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Water‐swollen hydrogel (WSH) membranes for gas separation were prepared by the dip‐coating of asymmetric porous polyetherimide (PEI) membrane supports with poly(vinyl alcohol) (PVA)–glutaraldehyde (GA), followed by the crosslinking of the active layer by a solution method. Crosslinked PVA/GA film of different blend compositions (PVA/GA = 1/0.04, 0.06, 0.08, 0.10, 0.12 mol %) were characterized by differential scanning calorimetry (DSC) and their water‐swelling ratio. The swelling behavior of PVA/GA films of different blend compositions was dependent on the crosslinking density and chemical functional groups created by the reaction between PVA and GA, such as the acetal group, ether linkage, and unreacted pendent aldehydes in PVA. The permeation performances of the membranes swollen by the water vapor contained in a feed gas were investigated. The behavior of gas permeation through a WSH membrane was parallel to the swelling behavior of the PVA/GA film in water. The permeation rate of carbon dioxide through the WSH membranes was 105 (cm3 cm?2 s?1 cmHg) and a CO2/N2 separation factor was about 80 at room temperature. The effect of the additive (potassium bicarbonate, KHCO3) and catalyst (sodium arsenite, NaASO2) on the permeation of gases through these WSH membranes was also studied. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1785–1791, 2001  相似文献   

11.
Nano‐TiO2/carboxymethyl chitosan (CMCS)/poly(vinyl alcohol) (PVA) ternary nanocomposite hydrogels were prepared by freezing–thawing cycles and electron‐beam radiation with PVA, CMCS, and nano‐TiO2 as raw materials. The presence of nano‐TiO2 nanoparticles in the composite hydrogels was confirmed by thermogravimetry, Fourier transform infrared spectroscopy, and X‐ray powder diffraction. Field emission scanning electron microscopy images also illustrated that the TiO2/CMCS/PVA hydrogel exhibited a porous and relatively regular three‐dimensional network structure; at the same time, there was the presence of embedded nano‐TiO2 throughout the hydrogel matrix. In addition, the nano‐TiO2/CMCS/PVA composite hydrogels displayed significant antibacterial activity with Escherichia coli and Staphylococcus aureus as bacterial models. The antibacterial activity was demonstrated by the antibacterial circle method, plate count method, and cell density method. Also, with the Alamar Blue assay, the cytotoxicity of the composite hydrogel materials to L929 cells was studied. The results suggest that these materials had no obvious cytotoxicity. Thus, we may have developed a novel, good biocompatibility hydrogel with inherent photosensitive antibacterial activity with great potential for applications in the fields of cosmetics, medical dressings, and environmental protection. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44150.  相似文献   

12.
Oxygen transmission rates and free volume properties (i.e. average volumes of free-volume-cavities (Vf), mean number of the free volume cavities per unit volume (I3) and fractional free volume (Fv)) values of bio-based polyamide 612 (PA612)/poly(vinyl alcohol) (PVA) (i.e. PA612xPVA03y, PA612xPVA05y, PA612xPVA08y and PA612xPVA14y) blend films were reduced to a minimum value, when their PVA content reached corresponding optimal values of 25, 20, 15 and 10 wt%, respectively. The minimum oxygen transmission rate, Vf, I3 and Fv value obtained for the best PA61290PVA1410, PA61285PVA0815, PA61280PVA0520 and PA61275PVA0325 bio-based blown films reduced considerably with decreasing PVA degrees of polymerization. As evidenced by the results of dynamical mechanical analysis, differential scanning calorimetry, wide angle X-ray diffraction and Fourier transform infrared spectroscopic experiments, PA612 and PVA are miscible to some extent at the molecular level when their PVA contents are ≤ the corresponding optimal values. The significantly improved oxygen barrier and free volume properties for the PA612xPVAzy blend films with optimized compositions is at least in part to the enhanced intermolecular interactions between PA612 carbonyl groups and PVA hydroxyl groups.  相似文献   

13.
DMSO/water (80/20 volume ratio) solutions of commercial poly(vinyl alcohol)s (a‐PVA99, a‐PVA88) with degrees of saponification of 99.3 and 88 mol % were gel‐spun into methanol (−20 and −70°C). The dry filaments obtained were drawn at 200°C (a‐PVA99) and 150–180°C (a‐PVA88). The maximum draw ratio and Young's modulus were 26 and 34 GPa for a‐PVA99 and 21 and 24 GPa for a‐PVA88 (drawing temperature: 160°C). So, at first, the dry filaments obtained for a‐PVA88 were drawn at 150–180°C until 10 times their original length. Moreover, the predrawn a‐PVA88 filaments were perfectly saponificated under fixing at the both ends and then the filaments were redrawn at 200°C. The maximum draw ratio and Young's modulus for the filaments (a‐PVA88→99) predrawn at 150°C were 28 and 39 GPa, respectively. The a‐PVA88→99 filaments had two melting peaks (228 and 236°C). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2872–2876, 2000  相似文献   

14.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A nanocomposite reservoir‐type hydrogel dressing of poly vinyl alcohol (PVA) was fabricated by a freeze–thaw method and loaded with silver‐nanoparticle‐coated chitosan wafers (Ag–CHWs). The Ag–CHWs were synthesized by a sonication technique with silver nitrate (AgNO3) and chitosan powder. Scanning electron microscopy images showed silver nanoparticles (AgNPs) with a size range of 10 ± 4 nm on the surface of the chitosan wafers, and the antibacterial efficacy (minimum inhibitory concentration) of the Ag–CHWs was measured against Pseudomonas aeruginosa (32 µg/mL), Staphylococcus aureus, (30 µg/mL) and Escherichia coli (32 µg/mL). The antimicrobial PVA hydrogel showed an improved tensile strength (~0.28 MPa) and gel content (~92%) in comparison with the blank hydrogels. Full‐thickness‐excision wound studies of the nanocomposite dressing on Wistar rats revealed enhanced wound contraction, improved inflammation response, re‐epithelization rate, neoangiogenesis, and granulation tissue formation in comparison to the control group. A flexible, biocompatible, nanocomposite reservoir dressing not only established the chitosan as a stabilizer but also proved the efficacious and safe utility of AgNPs toward chronic wound management. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43472.  相似文献   

16.
Fully bio-based polyamide 11 (PA11) was melt-blended with poly(vinyl alcohol) (PVA) with varying degrees of polymerization (DP) to prepare PA11xPVAzy. The PA11xPVAzy films demonstrated the lowest oxygen transmission rates (OTR) and free volume characteristics, when PVA contents of each PA11xPVAzy series reached a corresponding critical concentration. The minimum OTR and free volume characteristics obtained for the optimal PA11xPVAzy films reduced significantly with decreasing PVA DPs. The OTR of the optimal PA11xPVAzy blown film was 1.07 cm3 m−2 day−1 atm−1, which is near to that of the ethylene-vinyl alcohol copolymer high-barrier polymer. The results of dynamical, mechanical, and other experimental characterizations demonstrated that PA11 and PVA are compatible to some extent when PVA concentrations are less-than or equal to the respective critical values. The enhanced oxygen permeation resistance and free volume characteristics for optimal PA11xPVAzy films are at least partly ascribed to the improved hydrogen-bonded molecular interactions between PA11 CO groups and PVA O─H groups. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48562.  相似文献   

17.
Chitosan/poly(vinyl alcohol) (PVA) nanofibers with antibacterial activity were prepared by the electrospinning of a chitosan/PVA solution with a small amount of silver nitrate (AgNO3) and titanium dioxide (TiO2). Nanofibers with diameters of 270–360 nm were obtained. The yield of low‐viscosity chitosan (LCS)/PVA nanofibers was higher than that of high‐viscosity chitosan (HCS)/PVA, and the water content of the HCS/PVA nanofibers and the LCS/PVA nanofibers were 430 and 390%, respectively. The nanofibers developed in this study exhibited antibacterial activities of 99 and 98% against Staphylococcus aureus and Escherichia coli, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Comb‐type graft hydrogels, composed of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm), were prepared to manifest rapid temperature and pH sensitivity. Instead of directly grafting the NIPAAm monomer onto the chitosan chain, semitelechelic PNIPAAm with carboxyl end group was synthesized by radical polymerization using 3‐mercaptopropionic acid as the chain‐transfer agent, and was grafted onto chitosan having amino groups. The comb‐type hydrogels were prepared with two different graft yields and grafting regions, such as surface‐ and bulk‐grafting, and then compared with a chitosan hydrogel. The synthesis of telechelic PNIPAAm and the formation of amide group were confirmed by using FTIR spectroscopy and gel permeation chromatography. Results from the water state and thermal stability revealed that the introduction of the PNIPAAm side chain disturbed the ordered arrangement of the chitosan molecule, resulting in an increase in the equilibrium water content. Comb‐type graft hydrogels showed rapid temperature and pH sensitivity because of the free‐ended PNIPAAm attached to the chitosan main chain and the chitosan amino group itself, respectively. In particular, the surface graft hydrogel maintained its dimension at low pH, although the chitosan main chain was not crosslinked, whereas chitosan and bulk graft hydrogel were dissolved as a result of the coating effect of pH‐independent PNIPAAm. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2612–2620, 2004  相似文献   

19.
The effect of the stereoregularity and molecular weight of poly(vinyl alcohol) (PVA) on the mechanical properties of hydrogel was investigated. Compressive strength, creep behavior, and dynamic viscoelasticity were measured on hydrogels of syndiotacticity‐rich PVA derived from poly(vinyl pivalate) (Dp = 1690 diad‐syndiotacticity = 61%, Dp = 8020 diad‐syndiotacticity = 62%) and atactic PVA (Dp = 1750 diad‐syndiotacticity = 54%, Dp = 7780 diad‐syndiotacticity = 54%). Increasing the molecular weight of molecular chains constituting the gel improved the compressive strength of atactic PVA hydrogel. The stereoregularity of PVA had a greater effect than molecular weight on the strength of the hydrogel. Gel prepared from 8.8 g/dL syndiotacticity‐rich PVA had a high compressive modulus of 10 kPa, and the compressive modulus of the gel prepared from 3.3 g/dL was comparable with that of atactic PVA hydrogel prepared with more than 6 g/dL. The dynamic storage modulus of the gel derived from syndiotacticity‐rich PVA was remarkably higher than that of the atactic PVA gel and remained constant up to 60°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A novel trilayered controlled‐release nitrogen, phosphorous, and potassium (NPK) fertilizer hydrogel was prepared by dipping the NPK fertilizer granules sequentially in 7% w v?1 poly(vinyl alcohol) (PVA) and 2% w v?1 chitosan (CS) solutions and then cross‐linking the CS layer (cross‐CS) via glutaraldehyde vapor deposition. Different NPK fertilizer hydrogels were then synthesized by inverse suspension polymerization of the dried PVA/cross‐CS bilayer‐coated fertilizer granules in various molar ratios of acrylamide (AM) and acrylic acid (AA) monomers, and polymerization with varying molar ratios of ammonium persulfate, N,N,N′,N′‐tetramethylethylenediamine and N,N′‐methylenebisacrylamide (N‐MBA). The water dissolution time of the obtained PVA/cross‐CS/poly (AA‐co‐AM) trilayer‐coated NPK fertilizer hydrogel granules was prolonged, while the water absorbency increased with increasing AA contents, and decreased with increasing N‐MBA contents in the outer poly(AA‐co‐AM) coating. The optimal trilayer‐coated NPK fertilizer hydrogel obtained released 84 ± 18, 63 ± 12, and 36 ± 15% of the N, P, and K nutrients, respectively, after a 30‐day immersion in water. The release phenomena of the N, P, and K nutrients of the fertilizer hydrogel obeyed both the Korsmeyer‐Peppas and Ritger‐Peppas models with a pseudo‐Fickian diffusion mechanism. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41249.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号