首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of extracts and fermentable sugars during mashing can be limited by incomplete starch gelatinisation. The aim of this research was to develop mashing programme for 100% teff malt as a potential raw material for gluten‐free lactic acid‐fermented beverage. Isothermal mashing at temperatures ranging between 60 and 84 °C was conducted, and the highest extract (85%) was observed for the wort samples produced at temperatures higher than 76 °C. Sixty‐minute rest at 71 °C resulted in higher fermentable sugars than other tested conversion rest temperatures. Inclusion of lower mashing‐in temperature in the mashing programme also substantially improved the concentrations of free amino nitrogen (128 mg L?1) and fermentable sugar (58 g L?1) in the final wort. Therefore, 30‐min rest at 40 °C followed by 60‐min rest at 71 °C and 10‐min rest at 78 °C was found to be a suitable mashing programme for teff malt.  相似文献   

2.
Preliminary microbiological studies carried out on sorghum grains showed that the major microorganisms found were mainly bacteria and that aflatoxin‐producing fungi were not found. The effect of added commercial enzyme preparations and different infusion mashing temperatures on extract yield, from sorghum malted at 30 °C, was studied. The infusion mashing method (65 °C) developed for mashing well‐modified barley malt produces poor extract yields with sorghum malt. The extract yield from the sorghum malt in this study was very low with infusion mashing at 65 °C, without the addition of commercial enzyme preparations. A higher extract yield was obtained from the sorghum malt, without the commercial enzyme addition, when using infusion mashing at 85 °C. Both infusion mashing temperatures (65 and 85 °C) showed an improved extract yield over the control malt when commercial enzyme preparations were used during mashing of the sorghum malt. The added enzyme preparations resulted in a higher extract yield from the germinated sorghum when infusion mashing was performed at 65 °C over mashing at 85 °C. The use of individual commercial enzymes (α‐amylase, β‐glucanase, protease, xylanase, saccharifying enzyme and combinations of some hydrolytic enzyme) increased extract yields, when complemented with the enzymes that had developed in the sorghum malt. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

3.
A sorghum variety was supplied as commercial malt and as an unmalted cereal by a maltster. The commercial sample had been malted in a tropical country. Sub‐samples of the unmalted cereal were malted in the laboratory under controlled germination temperatures of 28°C and 30°C. Laboratory and commercially malted sorghum were studied for their brewing qualities. The α‐amylase development in sorghum malt was enhanced when germination was carried out at the higher temperature of 30°C rather than at 28°C. Hot water extract (HWE) was more variable. With infusion mashing, results showed a significant difference for germination time (3–6 days), but no significant difference relating to germination temperature. With the decantation mashing method the reverse was observed. The low numerical values of HWE obtained from sorghum malt in the infusion mashing process confirmed that this process is not suitable to produce optimal extract development from malted sorghum. The 28°C germinated sorghum released more FAN products into the worts than the 30°C malt, using both the infusion and decantation methods. With regard to the parameters tested, commercially malted sorghum gave lower analytical values than laboratory malted sorghum. It was also observed that variations in malting temperatures and mashing processes can cause unexpected variations in the analyses of sorghum malt. These findings suggest that careful process control is required during the malting and mashing of sorghum.  相似文献   

4.
Proso millet is a gluten‐free cereal and is therefore considered a suitable raw material for the manufacturing of foods and beverages for people suffering from celiac disease. The objective of this study was to develop an optimal mashing procedure for 100% proso millet malt with a specific emphasis on high amylolytic activity. Therefore, the influence of temperature and pH on the amylolytic enzyme activity during mashing was investigated. Size exclusion chromatography was used to extract different amylolytic enzyme fractions from proso millet malt. These enzymes were added into a pH‐adjusted, cold water extract of proso millet malt and an isothermal mashing procedure was applied. The temperatures and pH optima for amylolytic enzyme activities were determined. The α‐amylase enzyme showed highest activity at a temperature of 60°C and at pH 5.0, whereas the β‐amylase activity was optimum at 40°C and pH 5.3. The limit dextrinase enzyme reached maximum activity at 50°C and pH 5.3. In the subsequent mashing regimen, the mash was separated and 40% was held for 10 min at 68°C to achieve gelatinisation. The next step in the mashing procedure was the mixture of the part mashes. The combined mash was then subjected to an infusion mashing regimen, taking the temperature optima of the various amylolytic enzymes into account. It was possible to obtain full saccharification of the wort with this mashing regimen. The analytical data obtained with the optimised proso millet mash were comparable to barley wort, which served as a control.  相似文献   

5.
The effect of germination conditions on rice malt quality was studied by germinating rice for different periods of time up to 7 days over a range of temperatures (22° to 32°C). Germination time and temperature had a significant effect on rice malt diastatic power, cold and hot water extracts, total reducing sugars, and free alpha amino nitrogen. In general, diastatic power, cold water extract, hot water extract, total reducing sugars and free alpha amino nitrogen, all increased with germination time and temperature. Germination temperatures of 28°C and 30°C were good for the development of diastatic power, cold water extract, hot water extract, total reducing sugars and free alpha amino nitrogen. However germinating at 30°C gave maximum result. The mashing trials with rice malted for 6 days showed a slow and incomplete saccharification, slow filtration rate, and high total available extract in spent grains.  相似文献   

6.
Existing methods of assay of malt starch‐degrading enzymes were critically appraised. New methods based on natural substrates, namely starch and its natural intermediate‐derivative, were developed for all the enzymes, except limit dextrinase for which pullulan was used. Thermostability, optimal temperatures and pHs were established. α‐Amylase and limit dextrinase were the most thermostable and β‐amylase, α‐glucosidase and maltase were the least stable while diastase occupied an intermediate position. The optimal temperatures were congruent with thermostability, β‐ amylase having the lowest (50°C) and α‐amylase the highest (65°C) with the remaining enzymes, including diastase, falling in between. In contrast, α‐amylase has the lowest optimal pH (pH 4.5) and β amylase the highest (pH 5.5) while the others have pHs in between the two values. The roles of the enzymes were evaluated taking into account the level of activity, thermostability, optimum pH, the nature of the product(s), and the relevance to brewing. β‐Amylase production of maltose was synergistically enhanced, mostly by α‐amylase but also limit dextrinase. α‐Glucosidase and maltase are unimportant for brewing, because of their low activity and the negative impact on β‐amylase activity and the negative effect of glucose on maltose uptake by yeast. The starch‐degrading enzymes (diastase) in a gram of malt were able to degrade more than 8 g boiled starch into reducing sugars in 10 min at 65°C. The latter, suggests that it will be possible to gelatinise most of the malt starch at a higher temperature and ensure its hydrolysis to fermentable sugars by mixing with smaller portions of malt and mashing at lower temperatures e.g. 50–60°C.  相似文献   

7.
The aim of this research was to investigate the relationship between starch composition in barley and its malted counterpart alongside malt enzyme activity and determine how these factors contribute to the fermentable sugar profile of wort. Two Australian malting barley varieties, Commander and Gairdner, were sourced from eight growing locations alongside a commercial sample of each. For barley and malt, total starch and gelatinisation temperature were taken, and for malt, α‐ and β‐amylase activities were measured. Samples were mashed using two mashing profiles (infusion and Congress) and the subsequent wort sugar composition and other quality measures (colour, original gravity, soluble nitrogen) were tested. Variety had no significant (<0.05) effect on any barley, malt, enzyme or wort characteristics. However, growing location impacted gelatinisation temperature, colour, malt protein content and original gravity. The gelatinisation temperature in malt samples was higher, by ~0.8°C, than in the equivalent barley sample. Several malt samples, even with protein contents <12.0%, had gelatinisation temperature >65°C. The fermentable sugars measured in the malt prior to mashing showed a higher proportion of maltose than glucose or maltotriose. In addition, there were significant differences in the amount of sugar produced by each mashing method with the high temperature infusion producing a higher amount of sugar and proportionally more maltose. There is scope for further research on the effect of genetics and growing environment on gelatinisation temperature, mash performance and fermentable sugar development. Routinely measuring gelatinisation temperature and providing this information on malt specification sheets could help brewers optimise performance. © 2019 The Institute of Brewing & Distilling  相似文献   

8.
High‐pressure treatment, which is an effective means of enhancing enzymatic reactions, was implemented during beer mashing to increase the production yield of fermentable sugar (FS). The malt solution was heated (62, 67, and 72°C) under pressure [0.1 (1 atm), 2, 50 and 100 MPa], and the FS was measured. The amount of FS reached an equilibrium level, which was the highest at 67°C and at 2 MPa. The pressures were 2, 50, 100, and 0.1 MPa in decreasing order of FS amount at 67°C. The temperatures were 67, 72 and 62°C in decreasing order of FS amount at 2 MPa. With a mechanistic approach, only the effect of pressure on gelatinization was analysed. The gelatinization degrees were also higher at pressures higher than 0.1 MPa. This observation highlights the positive effect (increasing the FS yield) of high‐pressure treatment on beer mashing. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

9.
Temperature and mash thickness are shown to affect both mash performance and enzyme activity. Alpha amylase was found to be considerably more resistant to heat inactivation than was beta amylase. This difference was reflected by changes in wort fermentability that were manifest at temperatures below those which affected levels of extract. Increasing the mashing temperature from 65°C to 80°C had only a slight effect on extract but reduced wort fermentability from over 70% to less than 30%. At 85°C and over, when temperature had a significant effect on alpha amylase, as well as on beta-amylase, extract was lost and starch was present in the wort. Diluting the mash with liquor had a similar effect to that of increasing temperature on both the amylolytic enzymes and on the mash performance. Thin mashes contained more starch and fewer fermentable sugars than did thick mashes at the same temperature. These changes can be related to the stability of the amylolytic enzymes.  相似文献   

10.
Banana fig from fully ripe banana, caramel and malt extract, food drink thickening agent, acetic acid and local hop extract (Alfalfa) were used in the formulation of a low-sugar malt drink. Banana fig was used as a replacement for malted barley. The pH, total titratable acidity (TTA), percentage sugar content, specific gravity and saccharification of the extracts were determined. The effects of optimization of the mashing process using industrial enzyme-amyloglucosidase were also evaluated. The pH and percentage sugar content of the banana fig extract decreased with increased mashed temperatures. Specific gravity of the banana fig extracts decreased with increased mashed temperatures, with values from 1.013 to 1.010 against mashed temperatures of 45°C and 80°C respectively. At temperatures of 70°C and above the saccharification was observed to be incomplete. However, the introduction of industrial enzyme-amyloglucosidase resulted in complete saccharification. The formulation of the malt flavoured low-sugar drink gave three samples of 6.2%, 7.4% and 11.8% sugar contents. Sensory evaluation carried out on the malt flavoured low-sugar drink with commercial Amstel malt drink showed no significant difference in taste and flavour for all the samples compared with reference sample at p > 0.05. But sample BS3 with 11.8% sugar content was significantly different (p < 0.05) from sample BS2 (7.4% sugar) and BS1 (6.2% sugar) in colour and general acceptability. All samples except BS1 with 6.2% sugar were accepted by the panellists. This malt flavoured low-sugar drink could thus help reduce health complications in conditions associated with high sugar consumption. The use of additional enzymes in combination with the amyloglucosidase could improve the extract yield, nutritional and sensory qualities of the drink.  相似文献   

11.
The changes on the molecular weight distribution (MWD) and particle size distribution (PSD) during hydrolysis of barley malt in isothermal mashing procedures were determined using asymmetrical flow field flow fractionation coupled to multiangle laser light scattering and refractive index (AF4/MALS/RI). Mash/trials were focused on amylolytic starch degradation. Therefore, temperatures (65, 70, and 75 °C) were selected according to α‐ and β‐amylases range of activity. Samples were produced by triplicate, tracking amylolytic processes over time periods from 10 to 90 min in each mash/trial. AF4/MALS/RI analysis demonstrated significant differences on the values of the MWD and PSD according to the temperature/time profile used. At mashing times over 30 min at a temperature of 65 °C, when α‐ and β‐amylase are both active, the decrease over time of the MWD and PSD was significantly higher (P < 0.005) than at 70 °C when mainly α‐amylase is active. At 75 °C, also the activity of α‐amylase decreased and the MWD and PSD were significantly lower (P < 0.005) than at 70 or 65 °C at any time of the procedure. The MWD and PSD of beer components influence beer palate fullness, thus AF4/ MALS/RI would be a powerful tool for breweries to adapt their technological processes to obtain beers with particular sensorial attributes.  相似文献   

12.
Starch from malt and solid adjuncts provides the majority of fermentable sugars for fermentation. However, there is no current data on the variation in starch structure (particularly long chained amylose) and its impact on the final wort composition of fermentable sugars, specifically maltose. This is the first study to report variation in amylose structure from barley malt and rice used as an adjunct and how this impacts the production of maltose. We compared four commercial malts with two rice adjuncts mashes, in solid and liquid additions, with an all‐malt mash used as a control. All combinations of malt and rice adjuncts were tested under two grist‐to‐liquor (G:L) ratios (1:3 and 1:4) in a 65°C ramped mash. After mashing, the wort original gravity and maltose concentration were measured. The commercial malts had different malt quality but very similar gelatinisation temperatures (~65°C). The malts varied in starch and amylose contents but had only minor variations in average amylose chain lengths. The two rice adjuncts also had similar average amylose chains lengths, but quite different amylose contents, and hence different gelatinisation temperatures. The results showed that liquid adjunct mashes had higher original gravity and maltose concentration for both G:L ratios. However, there was no consistent result in original gravity or maltose between G:L ratio or adjunct type, suggesting interactions between each malt and rice adjunct. Knowing amylose chain length could improve understanding of the potential maltose levels of the sweet wort prior to fermentation. © 2018 The Institute of Brewing & Distilling  相似文献   

13.
The principles of extrusion cooking are summarised. In small scale trials good extracts were obtained from extruded barley when it was mashed with industrial enzymes, using a programmed temperature cycle. Extruded barley, wheat and maize and wheat flour yielded acceptable levels of extract when mashed with lager malt (70%) using a programme with 1 hour rests at 50°C and 65°C. The extracts obtained from these grists were increased above those obtained from grists of lager malt alone and the viscosities of the worts were reduced when the mashes were supplemented by preparations of bacterial enzymes. Enzyme additions also improved extract recoveries from all-malt mashes and reduced the viscosities of the derived worts. Using a temperature programmed mashing cycle and supplementary enzymes beers were prepared from a lager malt grist and grists in which the lager malt was partly replaced, by 30%, with extruded barley or extruded wheat, or extruded maize or wheat flour pellets. In every case wort was recovered relatively easily, the worts fermented normally and the beers were all fully acceptable, although their flavours did differ. However, in contrast to results of preliminary brewing trials, the head retentions of the beers made with adjuncts were unusually low, possibly because of particular enzyme additions.  相似文献   

14.
The objective was to develop a new simple and quick approach to predict fermentability, based on osmolyte concentration (OC). Eight malts were assayed for diastatic power, starch‐degrading enzymes [α ‐amylase, β ‐amylase and limit dextrinase (LD)] and malt OC (MOC). All malts were mashed to determine wort OC (WOC), real degree of fermentation (RDF) and sugar contents in a small‐scale mashing protocol. The results showed that MOC was correlated with malt α ‐amylase, LD, the resultant WOC, RDF and fermentable sugar (r  = 0.813, 0.762, 0.795, 0.867, 0.744, respectively), suggesting that MOC was discriminating in predicting levels of malt amylolytic enzymes, wort sugar and RDF without the mashing and fermentation process. Moreover, WOC showed stronger correlations with malt α ‐amylase, LD, RDF and fermentable sugars (r  = 0.796, 0.841, 0.884, 0.982, respectively), suggesting that WOC can be used to quickly predict wort sugar contents and RDF without a fermentation step. Furthermore, the effects of mashing temperature and duration on WOC, RDF and sugar contents are discussed. Adjusting mash temperature to 65°C or extending the mash duration dramatically increased RDF and WOC, whereas malt extract was relatively stable. Similarly, WOC showed significant correlations with RDF and fermentable sugars (r  = 0.912 and 0.942, respectively), suggesting that WOC provides a simple and reliable tool to assist brewers to optimize mash parameters towards the production of ideal wort fermentability. In conclusion, the ability of OC to predict malt fermentability and sugar content allows brewers to keep better control of fermentability in the face of variation of malt quality, and to quickly adjust mashing conditions for the consistency of wort fermentability. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

15.
The effect of a high temperature‐high humidity treatment (HT‐HHT) of germinated unkilned barley on malt quality and extract characteristics was studied. Two samples of six‐row barley were steeped to 42% moisture and germinated, with and without gibberellic acid, at 15°C for 5 days. The germinated barley was placed in a high humidity (75–80%) atmosphere maintained at 45, 55, and 65°C, respectively. For each temperature, treatments were carried out for 30, 60 and 90 min, respectively. At 45°C for 30–60 min, the malts developed high diastatic power and proteolytic activity. The high values for cold water extract and reducing sugars in the extracts indicated extensive amylolysis of starch granules during HT‐HHT of the germinated barley at 55–65°C. The worts were light in colour, with a pH of 5.3–5.8 and titratable acidity was in the range of 0.09‐0.23%. A consistent increase in soluble nitrogen and Kolbach index was observed in the malts treated at 45–55°C for 30–90 min. Free α‐amino nitrogen of the malts was in the desirable range of 120–150 mg L?1. Therefore, HT‐HHT can be useful for improving malt modification and wort characteristics and to shorten the germination time for malts from poor quality barley.  相似文献   

16.
Low‐alcohol beer can be obtained by physical and biological methods. The group of biological methods includes modification of the mashing regimes and changes in the fermentation process. The aim of the present work was to study two mashing regimes for low‐alcohol beer production. The increase in the mashing duration at 50 °C led to a linear increase in the extract and the concentration of reducing and fermentable sugars in the wort. It was found that the rate of formation of reducing sugars was higher than that of the formation of fermentable sugars, which can be used for the optimization of the mashing process. The introduction of a pause at 77 °C did not lead to a substantial increase in the concentration of fermentable extract, but did lead to an increase in the total and non‐fermentable extract. The available nitrogen content in the laboratory wort was in the range of 120–150 mg/dm3. As a result of conducting fermentation processes with the top‐fermenting yeast strain Saccharomyces cerevisiae S‐33, it was found that the combination of a small amount of fermentable sugars and a low fermentation temperature led to a beer being obtained that met the requirements for a low‐alcohol beverage. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

17.
Peroxidase activity was demonstrated in dry and germinating sorghum seeds. The specific activity increased about 14-fold during malting for a 96-hour period. On the average about 41% of peroxidase activity was located in the endosperm, and the remaining 56% in the acrospire and rootlet of sorghum malt. The crude enzyme extract retained 77%, 17.5% and 7.6% of activity after heating at 60°, 70° and 80°C, respectively. More than 50% of the peroxidase activity in the finished malt survived mashing at 65°C. Optimum activity was recorded at pH 5.5 which falls within the observed pH range of sorghum worts. The level of residual peroxidase activity in the wort differed with sorghum species.  相似文献   

18.
In this study, high‐pressure treatment (HPT) was applied to the mashing stage of beer production, which involves drying and milling of white malt and subsequent mixing with water. The following parameters were evaluated after pressurisation: β‐glucanase activity, starch gelatinisation and sugar extraction. Evaluation of starch hydrolysis from the malted barley endosperm after HPT was performed by measuring β‐glucanase activity after pressurisation; this enzyme breaks down gums and β‐glucans in wort and is desirable to obtain a good‐quality beer. Soaked malt samples pressurised at 200–600 MPa showed no increase in this activity compared with controls. Conversion of milled malt was evaluated indirectly by measuring the gelatinisation of starch, which began at 400 MPa. Soluble sugars were also measured in pressurised samples from the mashed liquid to investigate saccharification during the mashing stage. After 400 or 600 MPa treatment for 20 min, both the sucrose (g per 100 ml) and extract (l ° kg?1) values were the same as those found in mashed samples following the standard procedure used in the brewing industry (65 °C,90 min). Starch gelatinisation was analysed at different high pressures (200–600 MPa) and it was shown that gelatinisation began at 400 MPa. The HPT time would have to be shorter to make the process commercially attractive. © 2002 Society of Chemical Industry  相似文献   

19.
Sorghum malt α-glucosidase activity was highest at pH 3.75 while that of barley malt was highest at pH 4.6. At pH 5.4 employed in mashing sorghum malt α-glucosidase was more active than the corresponding enzyme of barley malt. α-Glucosidase was partly extracted in water but was readily extracted when L-cysteine was included in the extraction buffer, pH 8. Sorghum malt made at 30°C had higher α-glucosidase activities than the corresponding malts made at 20°C and 25°C. Nevertheless, the sorghum malts made at 20°C and 25°C produced worts which contained more glucose than worts of malt made at 30°C. Although barley malts contained more α-glucosidase activity than sorghum malts, the worts of barley had the lowest levels of glucose. The limitation to maltose production in sorghum worts, produced at 65°C, is due to inadequate gelatinization of starch and not to limitation to β-amylase and α-amylase activities. Gelatinization of the starch granules of sorghum malt in the decantation mashing procedure resulted in the production of sorghum worts which contained high levels of maltose, especially when sorghum malt was produced at 30°C. Although the β-amylase and α-amylase levels of barley malt was significantly higher than those of sorghum malted optimally at 30°C, sorghum worts contained higher levels of glucose and equivalent levels of maltose to those of barley malt. It would appear that the individual activities of α-glucosidase, α-amylase and β-amylase of sorghum malts or barley malts do not correlate with the sugar profile of the corresponding worts. In consequence, specifications for enzymes such as α-amylase and β-amylase in malt is best set at a range of values rather than as single values.  相似文献   

20.
To gain further technological knowledge of mashing, pilot scale mashing trials were carried out varying mashing programme (upward/isothermal mashing), milling procedure, grist:liquor ratio, time of mash stands, and grist modification level (well and poorly modified malt). During mashing β‐glucan, free amino nitrogen (FAN) and extract contents were analysed as key indicators for cytolysis, proteolysis, and amylolysis, respectively. The malt modification was of major impact for the β‐glucan release in contrast to a variation of milling procedure and of grist:liquor ratio. Extended stands lead to increased final values only for poorly modified malt. Similarly, FAN release was predetermined by malt modification while variation of milling and of grist:liquor ratio was not relevant in contrast to stand extension. None of the variations applied influenced extract yield as long as gelatinization temperature was reached. Greatest gains occurred around 57°C. In conclusion, wort quality is critically determined by malt modification. Mashing with well modified malt in combination with short stands should result in a mash of low β‐glucan and sufficient FAN level without losing extract yield. However, for poorly modified malt the variation of mashing parameters has an impact on the key indicators in which cytolysis plays the dominating role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号