首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用经硫酸处理过的三聚氰胺热解制备g-C_3N_4,利用光照还原在其表面负载Ag颗粒,再通过原位沉积法沉积上AgCl和TiO_2,制得g-C_3N_4/Ag/AgCl/TiO_2复合催化剂。既而采用XRD、TEM、FT-IR、UV-Vis-DRS和PL等分析手段对材料进行表征。并用10mg催化剂、50mL 15mg/L甲基橙溶液作为反应体系进行光催化实验。光照80min后,g-C_3N_4/Ag/AgCl/TiO_2光催化剂对甲基橙的降解率为99.35%。相同条件下,g-C_3N_4、g-C_3N_4/Ag和g-C_3N_4/TiO_2催化剂对甲基橙的降解率分别为34.29%、45.33%和55.84%。该结果表明,复合材料g-C_3N_4/Ag/AgCl/TiO_2具有优异的光催化性能。优异的光催化性能得益于材料中g-C_3N_4、Ag、AgCl和TiO_24种组分间的协同作用。  相似文献   

2.
采用光沉积法和原位还原法制备负载型光催化剂Ag掺杂石墨相氮化碳(Ag/g-C_3N_4),并考察其在可见光区内对亚甲基蓝的光降解性能的影响机制。利用XRD、FT-IR、N_2吸附、SEM和XPS等手段表征Ag/g-C_3N_4样品,考察Ag掺杂方式和Ag掺杂量对亚甲基蓝的光降解活性和催化剂Ag/g-C_3N_4稳定性的影响。结果表明,Ag/g-C_3N_4对亚甲基蓝的光降解活性随着Ag掺杂量的增大而增大,光沉积法比原位还原法制备的光催化剂Ag/g-C_3N_4对亚甲基蓝可见光催化活性更好,经过5次循环实验后光催化活性未明显失活。这归因于前者制备的Ag纳米粒子更均匀的分布在g-C_3N_4表面从而抑制光生电子-空穴对的复合和促进光生电子的快速移除,Ag粒子在光照条件下产生的表面等离子体共振波效应也能提高催化剂Ag/g-C_3N_4的光降解效率。  相似文献   

3.
采用3种前驱物在同样的条件下,煅烧处理得到类石墨相氮化碳(g-C_3N_4),且分别与BiVO_4进行复合得到了BiVO_4/g-C_3N_4复合光催化剂。通过X射线衍射、红外光谱和紫外-可见分光光度计等表征手段证明了3种前驱物制备的g-C_3N_4及BiVO_4/g-C_3N_4复合催化剂的形成,并分别在可见光下考察其对罗丹明B(RhB)的光催化氧化降解性能。结果表明,由尿素制备的g-C_3N_4(CN-U)相较于由三聚氰胺和硫脲制备的样品(CN-M和CN-T),其对RhB的光催化降解活性更高,归因于其较大的比表面积与更高的氧化能力;制备的BiVO_4/g-C_3N_4复合催化剂对RhB降解活性均优于纯光催化剂,当BiVO_4与g-C_3N_4质量比为10%(wt,质量分数,下同)时最佳,且10%BiVO_4/CN-U的光催化活性最高。BiVO_4/g-C_3N_4复合催化剂由于两者界面高效的电荷转移,有利于光生载流子的分离。  相似文献   

4.
铋系复合光催化剂的制备及其对双酚A光催化降解研究   总被引:1,自引:0,他引:1  
将氧化铋(Bi_2O_3)与三聚氰胺或盐酸胍混合煅烧,通过原位晶相合成法制备了界面紧密接触的碳三氮四复合碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3)和碳三氮四复合氯氧化铋(g-C_3N_4/BiOCl)复合光催化剂。采用X射线衍射仪、扫描电子显微镜、紫外-可见漫反射光谱仪等分析手段对复合光催化剂的结构和性能进行了分析表征。结果表明:Bi_2O_2CO_3和BiOCl纳米片均是从g-C_3N_4体相中生长出来,从而导致铋系氧化物和g-C_3N_4界面间的紧密接触。紫外-可见漫反射光谱分析结果表明,g-C_3N_4/Bi_2O_2CO_3和g-C_3N_4/BiOCl复合光催化剂的可见光吸收能力均优于g-C_3N_4和Bi_2O_3。在可见光照射下,复合光催化剂对双酚A表现出优越的降解性能。此外,探讨了复合光催化剂的光催化机理。由于g-C_3N_4和Bi_2O_2CO_3或BiOCl界面间的紧密接触导致了光生载流子的有效分离,从而提高了复合光催化剂的光催化活性。  相似文献   

5.
通过煅烧处理和沉淀反应合成以Ag纳米粒子为电子媒介的Z-型光催化剂Ag_2CO_3/Ag/g-C_3N_4。在可见光照射下,降解RhB评价Ag_2CO_3/Ag/g-C_3N_4复合物的光催化活性。结果表明:Ag2CO3/Ag/g-C3N4样品显示出比纯Ag_2CO_3和g-C_3N_4更强的光催化活性,当g-C3N4与Ag_2CO_3/Ag质量比为20%时,复合物呈现出最好的光催化性能,这归因于在Ag_2CO_3和g-C_3N_4间形成的Z-型异质结构,其有效促进电子转移速率和光生电子-空穴的分离。Z-型异质结构扩展了可见光吸收波长范围(从450nm到670nm),这是由于Ag纳米粒子表面离子共振的结果。捕获实验证实,在光催化降解RhB反应中,·O_2~-和空穴h~+是主要活性物质,·OH是次要活性物质,并提出了增强光催化活性的机理。  相似文献   

6.
Z-型光催化剂可以有效增强电荷分离,从而改善光催化剂的活性。采用浸渍–煅烧和水热法两步制备Z型BiVO_4/GO/g-C_3N_4光催化剂,并用不同手段对其进行表征。在BiVO_4/GO/g-C_3N_4的光催化过程中,GO纳米片作为BiVO_4和g-C_3N_4之间的快速传输通道,可以抑制电子–空穴复合,显著促进电荷分离,提高三元异质结的氧化还原能力。与单组分或二元复合物相比,该催化剂具有良好的光降解罗丹明B(RhB)的能力。在可见光照射下,它能够在120 min内降解85%RhB,空穴(h~+)在反应中起主要作用。该工作为三元光催化剂体系提供了简单的制备方法,其中g-C_3N_4通过GO与BiVO_4偶联,光催化活性显著提高。  相似文献   

7.
采用浸渍-焙烧法制备了具有可见光响应活性的硅藻土/g-C_3N_4复合光催化材料。利用TG、XRD、FE-SEM、HR-TEM、FT-IR、XPS、UV-Vis-DRS和PL谱等手段对其物相组成、形貌和光吸收特性进行表征。以Rh B的光催化降解为探针反应评价催化剂的活性。光催化结果表明,2.32wt%硅藻土/g-C_3N_4复合材料对Rh B有较高的催化活性,光催化降解的速率常数是纯g-C_3N_4的1.9倍。自由基捕获实验表明,·O_2~–是Rh B在硅藻土/g-C_3N_4复合材料上光催化降解的主要活性物种。光催化活性提高的主要原因在于硅藻土和g-C_3N_4之间静电作用有利于光生电子-空穴在g-C_3N_4表面的迁移,进而提高g-C_3N_4的光催化活性。  相似文献   

8.
采用水热、煅烧制备Co_3O_4/g-C_3N_4复合催化剂。用IR、XRD、TEM、UV-Vis、电化学对复合材料分析结果表明,Co_3O_4均匀地附着在g-C_3N_4的表面,形成异质结。阻抗曲线表面异质结能够促进空穴和光生电子的转移和分离。在可见光照射下,当15%Co_3O_4/g-C_3N_4复合材料做为光催化剂,其光催化降解甲基橙的降解率可达90%,并拟合符合动力学一级方程,多次循环利用性能几乎不变。  相似文献   

9.
采用水热法制备三维分级结构Bi_2WO_6,在此基础上采用浸渍-焙烧法将g-C_3N_4量子点成功沉积在Bi_2WO_6的表面,获得Z-型结构g-C_3N_4/Bi_2WO_6光催化剂。采用XRD,FE-SEM,TEM,UV-Vis-DRS测试手段对催化材料的组成、形貌和光吸收特性进行表征。以亚甲基蓝(MB)和对硝基苯酚(p-NPh)为模型污染物,考察g-C_3N_4量子点表面修饰对Bi_2WO_6光催化活性的影响。结果表明:所得Bi_2WO_6为三维分级多孔结构,孔尺寸约为10nm,浸渍-焙烧法可将尺寸约5nm的g-C_3N_4量子点沉积在其二级结构纳米片表面。Z-型结构g-C_3N_4/Bi_2WO_6光催化剂的催化活性优于纯Bi_2WO_6的,且10%g-C_3N_4/Bi_2WO_6(质量分数)异质光催化剂对MB的降解表观速率常数(k_(app))分别为纯Bi_2WO_6和g-C_3N_4的4.5倍和5.8倍,对p-NPh的k_(app)分别为纯Bi_2WO_6和g-C_3N_4的2.6倍和1.6倍。O■是光催化过程中的主要活性物种。g-C_3N_4量子点与Bi_2WO_6形成异质结,有利于拓宽光响应范围的同时有效抑制了Bi_2WO_6光生电子与空穴的复合,从而提高了催化剂的活性。  相似文献   

10.
以三聚氰胺、硝酸铋、偏钒酸铵、硝酸、氨水等为主要原料,在热解法合成g-C_3N_4基础上,通过水热法合成g-C_3N_4/BiVO_4复合光催化剂。采用XRD、SEM、BET和UV-Vis等对合成产物的物相组成、微观形貌和光催化性能进行表征,通过降解亚甲蓝溶液对试样的光催化性能进行评价。结果表明:g-C_3N_4/BiVO_4复合光催化剂的光催化性能较纯BiVO_4和g-C_3N_4有显著提高,当g-C_3N_4∶BiVO_4(理论合成质量比)=0.4∶1、水热温度为140℃、水热时间为10 h条件下,合成的g-C_3N_4/BiVO_4复合光催剂具有最佳光催化性能,在高压汞灯照射150 min条件下,对亚甲蓝溶液(10 mg/L)的降解率为80.8%,比相同条件下纯BiVO_4和g-C_3N_4的光催化效率分别提高47.5%和22.1%,且光催化反应符合一级动力学方程。  相似文献   

11.
以尿素、乙酸锌为前驱体,采用热聚合方法制备ZnO/g-C_3N_4复合光催化剂。通过X射线衍射、扫描电镜、红外光谱、紫外-可见光光谱及X射线电子能谱,对样品的晶体结构、形貌及光学性质进行表征。以紫外灯为光源,以酸性红(AR)为废水降解模型考察复合材料的光催化活性。结果表明:制得的复合光催化剂光催化性能要好于纯g-C_3N_4,且当ZnO∶g-C_3N_4=0.5∶1(摩尔比)时,光催化活性最高。复合后的光催化剂对反应底物有更强的吸附能力,能更有效地抑制电子-空穴的复合。进一步对AR的降解机理进行了探讨,发现超氧根自由基(O-·2)是使AR有效降解的活性物种。  相似文献   

12.
《功能材料》2021,52(7)
采用自组装方法制备出新型g-C_3N_4掺杂锰锌铁氧体复合物,并利用傅里叶变换红外光谱(FTIR),扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法对样品进行了表征。在可见光下通过样品对罗丹明B的降解效果,研究了g-C_3N_4掺杂锰锌铁氧体复合型光催化材料的光催化性能。结果表明:g-C_3N_4掺杂锰锌铁氧体掺杂比(3∶2)相比于单组分锰锌铁氧体和g-C_3N_4,表现出更高的光催化活性。0.5g/L的样品通过210 min的光反应,降解掉溶液中96.0%的罗丹明B。g-C_3N_4/锰锌铁氧体复合物的活性与稳定性相比于单体明显提高。g-C_3N_4掺杂锰锌铁氧体光催化剂具备强磁性材料特点,具有良好的可回收性,5次重复光催化实验后仍有90%以上的降解率,因此其在降解环境污染物方面具有较好的应用前景。  相似文献   

13.
通过原位生长法制备了g-C_3N_4/MnO_2复合光催化剂,利用XRD,FTIR和UV-vis DRS等方法表征材料的结构和光学性质,并考察在可见光照射下降解四环素的性能。结果表明,MnO_2的引入增强了g-C_3N_4对可见光的吸收;g-C_3N_4/MnO_2复合材料的光催化活性较单体得到提升,在可见光照射90 min内对TC降解率可达77.1%,经过5次循环实验后,对TC的降解率仅下降4%,复合材料具有良好的稳定性;机理研究表明,·O~(2-)是反应体系中的主要活性物质,g-C_3N_4与MnO_2之间形成了Z型异质结,促进了光生电子-空穴的转移,提高了光催化活性。  相似文献   

14.
采用沉积-沉淀法制备Ag/AgCl/质子化g-C_3N_4(Ag/AgCl/p-g-C_3N_4)纳米复合材料,通过XRD、TEM、XPS、UV-Vis和PL对样品的结构、形貌和光学性能进行了表征。UV-Vis和PL分析表明,相比于纯gC_3N_4,p-g-C_3N_4和Ag/AgCl/p-g-C_3N_4纳米复合材料对可见光的响应能力和光生载流子的分离效率明显增强。通过可见光下降解甲基橙(MO)、盐酸四环素(TC)和环丙沙星(CIP)溶液评价样品的光催化性能。经优化后的Ag/AgCl/p-g-C_3N_4纳米复合材料在可见光照射60min后对MO的降解率达到90.4%,照射120 min后对TC和CIP的降解率分别为92.4%和76.1%。此外,Ag/AgCl/p-g-C_3N_4纳米复合材料具有良好的光催化稳定性。Ag/AgCl/p-g-C_3N_4纳米复合材料增强的光催化性能归因于Ag纳米颗粒的SPR效应以及Ag、AgCl和p-gC_3N_4之间的协同效应。  相似文献   

15.
以3,4,9,10-苝四甲酸二酐和L-天冬氨酸为原料,合成水溶性苝二酰亚胺衍生物N,N′-二(2-丁二酸基)-3,4,9,10-苝四羧酸二酰亚胺(PASP)。采用水热法将PASP接枝在g-C_(3)N_(4)上,制备PASP改性g-C_(3)N_(4)复合光催化剂(g-C_(3)N_(4)-PASP)。通过X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见光漫反射光谱(UV-Vis DRS)和固体荧光光谱等对g-C_(3)N_(4)-PASP的组成、结构、形貌和光学性质等进行表征,考察g-C_(3)N_(4)-PASP对水溶液中模型污染物亚甲基蓝(MB)的光催化降解活性。结果表明:g-C_(3)N_(4)与PASP经水热反应,可通过酰胺键共价结合;相比纯g-C_(3)N_(4),g-C_(3)N_(4)-PASP比表面积显著增大,吸收带边红移至614 nm,同时PASP修饰可促进g-C_(3)N_(4)材料表面光生电子和空穴分离,进而有效提升光催化活性。在可见光(λ>420 nm)照射下,g-C_(3)N_(4)-PASP对MB的降解率60 min内可达99.4%,降解速率常数k约为g-C_(3)N_(4)的2倍。  相似文献   

16.
采用真空辅助抽滤的方法制备了自支撑的氧化石墨烯复合膜,对其形态和结构进行表征,并以R6G溶液为目标污染物,考察了复合膜的水通量、R6G(罗丹明6G)截留率、SERS(表面增强拉曼光谱)检测性能及光催化降解性能.结果表明,g-C_3N_4(石墨相氮化碳)和Ag纳米颗粒成功嵌入GO片层之间,制备出GO/g-C_3N_4/Ag复合膜,膜厚度约为4.2μm,水通量为230.64 L/(m~2·h·MPa),R6G截留率达到91.27%;复合膜通过SERS技术能实现对R6G的快速、高灵敏度检测,检测浓度可低至10 nmol/L;复合膜光催化降解性能良好,可见光下反应2 h后R6G降解率可达97.05%.GO/g-C_3N_4/Ag复合膜具有吸附分离、SERS检测及光催化降解等多种功能,改善了GO膜的渗透通量低、不可重复利用等问题,可用于水中有机污染物的检测及降解.  相似文献   

17.
通过固混法制备不同BiVO_4含量的BiVO_4/石墨相氮化碳(BiVO_4/g-C_3N_4)复合光催化材料。采用粉末X射线衍射仪、傅里叶变换红外光谱仪和扫描电子显微镜分别对BiVO_4/g-C_3N_4复合催化剂的晶相组成、官能团和微观形貌进行了表征;通过可见光照射下罗丹明B的降解来评价纳米复合材料的光催化活性。结果表明:在可见光照射3h后,30%(质量分数)BiVO_4/g-C_3N_4复合物的降解率最高,达到87%。BiVO_4/g-C_3N_4良好的光催化性能可以归因于在BiVO_4和g-C_3N_4的界面形成的异质结。  相似文献   

18.
采用浸渍法制备了铁酸锌/石墨烯氮化碳(ZnFe_2O_4/g-C_3N_4)负载型光催化剂,对制得的催化剂样品进行了表征,并考察了其在紫外光下对甲基橙的降解效率。结果表明:ZnFe_2O_4/g-C_3N_4催化剂对甲基橙的降解催化活性明显提高,并随着ZnFe2O4掺杂量的增加而增大,ZnFe2O4掺杂量为6.0%(wt,质量分数)制得的ZnFe2O4/gC3N4对浓度10mg/L甲基橙140min后的紫外光降解率达100%。  相似文献   

19.
通过热聚合法制备了块状g-C_3N_4,并利用不同浓度的NaOH对块状g-C_3N_4进行常压剥离处理,获得了大比表面积、疏松多孔的g-C_3N_4。对样品进行了XRD、SEM、TEM、BET、PL、FT-IR、UV-Vis光谱多项表征,并进行了降解罗丹明B光催化性能测试。结果显示,随着NaOH溶液浓度的增加,g-C_3N_4疏松程度增加,经过浓度为0.3 mol/L的NaOH处理的g-C_3N_4层间氢键破坏程度大,层内的结构也遭到一定程度的破坏,比表面积明显增大,是块状g-C_3N_4的5.5倍。较大的比表面积有效地增加了对罗丹明B的吸附性,同时经过0.3 mol/L的NaOH处理的g-C_3N_4电子与空穴的复合速率降低,吸附和光催化协同效应使0.3 mol/L NaOH处理过的g-C_3N_4光催化降解罗丹明B的效率较块状的g-C_3N_4有较大程度的提高。  相似文献   

20.
石墨相碳化氮(g-C_3N_4)作为一种成本低廉、化学性质稳定、带隙窄的光催化剂,一直是材料科学领域的研究重点。虽然g-C_3N_4存在光生载流子复合率高、可见光利用率低、比表面积较小等缺点,但由于其聚合物的本身特性适合制备g-C_3N_4基复合材料,从而可以通过引入其他化学元素或异质结对g-C_3N_4进行改进,提高其光催化活性。与非金属共价掺杂不同,碱金属、碱土金属改性g-C_3N_4具有金属掺杂的非局域化特性,其表面活性位点增多,载流子分离率降低并且能使能带位置发生改变,从而具有较好的光催化性能,因此成为一个新的研究热点。综合考虑经济性和实用性,目前用来改善g-C_3N_4性能的碱/碱土金属元素多为锂(Li)、钠(Na)、钾(K)、钡(Ba)、镁(Mg)、钙(Ca)。现有的大部分数据表明,Li、Ca两种元素对g-C_3N_4的改性效果较好,尤其是Ca元素。同时结合不同制备工艺,如选择不同的前体,采用介孔材料作为催化剂载体,改变制备过程中的加热方式(控制升温速率、煅烧温度和时长),可以使g-C_3N_4的光催化活性进一步提高。虽然碱金属、碱土金属改性g-C_3N_4的理论依据是金属离子的引入会对能带结构和载流子迁移率产生影响,但金属离子与周围原子的相互作用和对能带的调控机理还未明确,实现碱金属/碱土金属可控改性g-C_3N_4也尚待研究。对碱金属、碱土金属改性g-C_3N_4的系统研究仍需继续进行大量的实验作为分析验证的基础。本文对国内外碱金属、碱土金属掺杂改性g-C_3N_4技术的发展现状进行了总结,归纳了改性g-C_3N_4的制备方法及应用范围,将改性g-C_3N_4在实际应用领域(氮氧化合物降解、光解水析氢、有机污染物降解)的光催化活性进行对比,按照掺杂元素种类和数量将其分为单掺杂和复合掺杂,并对其增强机理进行归纳整理,提出了当前碱金属、碱土金属改性g-C_3N_4发展所面临的问题,并对未来将要进行的工作及发展趋势进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号