首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
The effect of the full refining process on the stability of rice bran oil during storage at room temperature was studied. Crude and refined rice bran oil were kept in the dark and were exposed to light for 240 days, and every 10 days samples were drawn and analysed. The storage stability of crude and fully refined rice bran oil was determined and compared with respect to fatty acid composition, tocopherols, tocotrienols, sterols and γ‐oryzanol content. In addition, the oxidative status was evaluated by determining the concentration of polar compounds and the oil stability index (OSI). A good correlation between the decrease of total tocopherols and the OSI was found. α‐Tocopherol had the highest correlation coefficient (r2 = 0.9653) in crude rice bran oil kept in the dark, and γ‐tocopherol showed the lowest in the refined sample (r2 = 0.4722). The order of stability of tocopherols and tocotrienols in crude oil was completely different from that in refined oil. In comparison to tocopherols, sterols showed a better stability during the entire storage period. The exposure to daylight heavily affected the composition and the stability of both crude and refined rice bran oil.  相似文献   

2.
Rice bran oil, not being a seed‐derived oil, has a composition qualitatively different from common vegetable oils and the conventional vegetable oil processing technologies are not adaptable without incurring huge losses. The oil's unusual high content of waxes, free fatty acids, unsaponifiable constituents, phospholipids, glycolipids and its dark color, all cause difficulties in the refining process. An attempt was made in this investigation to look into factors that are responsible for such difficulties and to develop suitable methodologies for physical refining of rice bran oil. Special attention was given to dewaxing, degumming and deacidification steps. The high content of glycolipids (∼6%) present in the oil was found to be a central problem and their removal appeared crucial for successful processing of the oil. We have also isolated and identified, for the first time, phosphorus‐containing glycolipids that are unique to this oil. These compounds prevent a successful degumming of the oil and their high surface activity leads to unusually high refining losses during alkali refining. A number of simple processes has been evolved, including 1) a simultaneous dewaxing and degumming process, 2) an unusual enzymatic process to degum the oil, 3) processes for the removal of the glycolipids including the phosphoglycolipids and 4) a process for the isolation of the glycolipids which may have potential applications in the food, cosmetic and pharmaceutical industries. The processing protocol suggested here becomes the first and only one to produce an oil with less than 5 ppm of phosphorus from crude rice bran oil, rendering it thus suitable for physical refining. We believe that the present results are very significant and should contribute to a better utilization of this valuable oil.  相似文献   

3.
Biodiesel has attracted considerable attention as an alternative fuel during the past decades. The main hurdle to the commercialization of biodiesel is the cost of the raw material. Use of an inexpensive raw material such as rice bran oil is an attractive option to lower the cost of biodiesel. Two commercially available immobilized lipases, Novozym 435 and IM 60, were employed as catalyst for the reaction of rice bran oil and methanol. Novozym 435 was found to be more effective in catalyzing the methanolysis of rice bran oil. Methanolysis of refined rice bran oil and fatty acids (derived from rice bran oil) catalyzed by Novozym 435 (5% based on oil weight) can reach a conversion of over 98% in 6 h and 1 h, respectively. Methanolysis of rice bran oil with a free fatty acid content higher than 18% resulted in lower conversions (<68%). A two‐step lipase‐catalyzed methanolysis of rice bran oil was developed for the efficient conversion of both free fatty acid and acylglycerides into fatty acid methyl ester. More than 98% conversion can be obtained in 4–6 h depending on the relative proportion of free fatty acid and acylglycerides in the rice bran oil. Inactivation of lipase by phospholipids and other minor components was observed during the methanolysis of crude rice bran oil. Simultaneous dewaxing/degumming proved to be efficient in removing phospholipids and other minor components that inhibit lipase activity from crude rice bran oil. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
A comparative nutritive study was made to show that the extent of purification markedly influences the nutritive characteristics of rice bran oil. The coefficient of digestibility was 93.8% when rice bran oil that had been purified by degumming, deacidifying, bleaching and deodorizing was fed to rats; whereas it was 94.8% when extremely pure rice bran oil, which was achieved by including an additional dewaxing step, was used. Rice bran oil without deodorization, but purified by other treatments, showed a 96.2% coefficient of digestibility, which is somewhat lower than that of groundnut oil. However, after a feeding experiment over three months, the highly purified rice bran oil showed better results than the other two purified samples of rice bran oil, and was sometimes better than groundnut oil in terms of total lipid, triglyceride and especially in cholesterol content in serum, liver and heart tissues.  相似文献   

5.
Crude rice bran oil was dewaxed by chilling to 17°C, followed by centrifuging. The wax sludge obtained was 68% free fatty acids and 32% waxes, whereas the oil phase was 65.65% fatty acids and 34.35% glycerides. The dewaxed oil was evaluated as an antifoaming agent for aqueous media and compared to commercial oleic acid. It was thought that dewaxed rice bran oil has an antifoaming power greater than oleic acid, especially when used in small proportions. Dewaxed rice bran oil was also applied to break and control the foam formation in a phosphoric acid production unit.  相似文献   

6.
对米糠综合利用的途径进行了详细论述;并总结厂各种米糠精制产品在日用化工、医药工业、食品工业、精细化工领域的具体用途,包括米糠油的浸提技术,米糠油作为营养保健食品的开发利用,米糠油作为油脂化工原材料的深加工;米糠油精炼皂脚中提取游离脂肪酸及脂肪酸衍生物的制备;米糠脱水、脱臭、脱色的小皂化物提取谷甾醇、生育酚、谷维素的方法;米糠脱蜡副产物制备糠蜡和二十烷醇的利用及米糠饼(粕)提取植酸钙、植酸和肌醇的利用途径,最后提出了大力发展我国米糠产业的市场前景。  相似文献   

7.
Summary Hard rice waxes of high melting points have been obtained directly from rice bran while simultaneously producing oil. These waxes were produced by the following two methods. 1. selective cold hexane-extraction of cooked rice bran to remove the oil, hot hexane-extraction to remove the wax, chilling of the hot miscella and separation of the precipitated wax by centrifugation; 2. single hot hexane-extraction of raw or cooked rice bran, hot water washing and chilling of the miscella, separation of the wax precipitate by settling or centrifugation, and multiple cold hexane-washings of the wax. Wax can also be processed from rice oil settlings by the latter method after a miscella has been prepared. The cold extraction-hot extraction method should be preferable as a process when conducted on a single continuous filtration-extraction unit without reslurrying. Indications are that oil refining losses may be decreased by this method. Yields of rice wax varied from 0.22 to 0.31% of the original rice bran, or 1.29 to 1.82% of the extracted oil. Presented at the annual fall meeting, American Oil Chemists’ Society, Nov. 2–4, 1953, Chicago, Ill. One of the laboratories of the Southern Utilization Research Branch, Agricultural Research Service, United States Department of Agriculture.  相似文献   

8.
In the present work, a new strain Pseudomonas indica MTCC 3714 was studied for the production of biosurfactants using various rice‐bran oil industry residues viz. rice‐bran, de‐oiled rice‐bran, fatty acids and waxes. Among all the carbon sources, a maximum reduction in surface tension (26.4 mN/m) was observed when the media were supplemented with rice‐bran and the biosurfactant was recovered using the ultrasonication technique as one of the steps in the extraction process. Biosurfactants were obtained in yields of about 9.6 g/L using rice‐bran as the carbon source. The structure of the biosurfactants as characterized by FT‐IR, NMR (1H and 13C) and LC–MS analysis revealed that the majority of the biosurfactants were di‐rhamnolipids. The biosurfactants produced were able to emulsify various hydrocarbons and showed excellent potential in microbial enhanced oil recovery, as it was able to recover kerosene up to 70 % in a sandpack test.  相似文献   

9.
A new process for the physical refining of rice bran oil through combined degumming and dewaxing was developed on a laboratory scale and then demonstrated on a commercial scale. The simultaneous degumming and dewaxing of the crude oil with a solution of water and CaCl2, followed by crystallization at a low temperature (20°C), facilitated precipitation of the hydratable and nonhydratable phosphatides along with the wax, which enabled its separation and reduction to a greater extent. Bleaching and subsequent winterization (20°C) of this oil further reduced the phosphorus content to less than 5 ppm. Thus, these pretreatment steps enabled the physically refined rice bran oil to meet commercially acceptable levels for color, FFA content, and cloud point values (10–12 Lovibond units in a 1-in, cell, <0.25%, and 4–5°C, respectively) with very low neutral oil loss; this has not been observed hitherto. Rice bran oil is known for its high levels of bioactive phytochemicals, such as oryzanol, tocols, and sterols. The process reported here could retain more than 80% of these micronutrients in the end product. This paper was previously presented at the 95th AOCS Annual Meeting and Expo, Cincinnati, Ohio, May 9–12, 2004  相似文献   

10.
Four natural waxes were evaluated as stabilizers in peanut butter. The potential advantage of using natural waxes would be the replacement of current stabilizers such as hydrogenated or tropical oils, thereby reducing saturated fats and satisfying clean label requirements. Beeswax (BW), candelilla wax (CLW), rice bran wax (RBW), sunflower wax (SFW), and a commercial peanut butter stabilizer, hydrogenated cottonseed oil (HCO), were added to three natural peanut butter brands at levels ranging from 0.5% to 2.0% (w/w) and tested for accelerated oil release, long-term stability, firmness, and rheology. At levels ≥0.5%, all waxes improved oil-binding capacity (OBC). SFW and HCO had the highest OBC, followed by RBW, CLW, and BW. All waxes reduced the amount of oil separation after 6 months at 22 ± 2 °C. HCO followed by SFW reduced oil separation the most, but there were no significant differences between stabilizers at 1–2%. Firmness and yield stress increased with increasing stabilizer level, with SFW increasing firmness the most, followed by HCO, RBW, and CLW, while BW had the lowest effect. The results indicate that the waxes may be feasible replacements for hydrogenated oils as peanut butter stabilizers, but levels would need to be optimized depending on the product characteristics and wax type.  相似文献   

11.
The effects of the chemical refining process on the minor compounds of rice bran oil and its heat stability were investigated. After 8 h of heating, about 50% and 30% of total tocopherols remained in crude and refined rice bran oil, respectively. The individual tocopherols were differently affected by the refining process. The order of heat stability of tocopherols and tocotrienols in crude oil was found to be different from that in fully refined oil. A similar tendency was observed for sterols. After 8 h of heating, 65% and 72% of total sterols, and 14% and 46% of sterol esters, of crude or fully refined rice bran oil, respectively, disappeared. The heating process led to a 4% and 10.3% increase in polymer contents in crude and refined rice bran oil, respectively. Although refined rice bran oil showed good heat stability, when compared to crude oil its heat stability was decreased to some extent.  相似文献   

12.
Physical refining of rice bran oil in relation to degumming and dewaxing   总被引:15,自引:7,他引:8  
Physical refining of rice bran oil (RBO) with acidity between 4.0 and 12.4% has been investigated in relation to degumming and dewaxing pretretments. It appears that physical refining after combined low-temperature (10°C) degumming-dewaxing produces good-quality RBO with respect to color, free fatty acid, oryzanol, and tocopherol content.  相似文献   

13.
The main objective of this research was to enhance the understanding of the oil‐structuring properties of natural waxes. A number of natural food‐grade waxes were evaluated for their oil‐gelling properties using a combination of techniques, including rheology, differential scanning calorimetry, and polarized light microscopy. Based on the rheological measurements (oscillatory, flow, and thixotropic behavior), we found that rice bran wax, carnauba Brazilian wax and fruit wax showed weak gelling behavior in rice bran oil (prepared at concentrations as high as 5 % w/w), exhibiting relative low elastic moduli that displayed a high frequency dependency. On the contrary, carnauba wild wax, berry wax, candelilla wax, beeswax, and sunflower wax were efficient oleogelators forming strong gels at concentration of <2 % w/w. We attempt to explain these observed differences in gelling behavior by crystal morphology, network formation, and the final amount of crystalline phase.  相似文献   

14.
Immobilization of Lecitase (Phospholipase A1) in gelatin hydrogel and its stability is studied with a view to utilizing the immobilized enzyme for degumming rice bran oil. Excellent retention of enzyme activity (>80%) is observed in hydrogel containing 43.5% gelatin crosslinked with glutaraldehyde. Compared to the free enzyme which has a broad pH-activity profile (6.5–8.0), the activity of the immobilized enzyme is strongly dependent on pH and has a pH-optimum of pH 7.5. The optimum temperature of enzyme activity increases from 37 to 50 °C. Compared to the free enzyme which loses all its activity in 72 h at 50 °C, the immobilized enzyme retains its activity in full. The immobilized enzyme has been used efficiently in a spinning basket bioreactor for the degumming of rice bran oil with 6 recycles without loss of enzyme activity. The phosphorus content of the oil decreases from 400 ppm to 50–70 ppm in each cycle. After charcoal treatment and dewaxing, a second enzymatic treatment brings down the phosphorus content to <5 ppm.  相似文献   

15.
The role of viscosity on was settling and refining loss in rice bran oil (RBO) has been studied with model systems of refined peanut oil and RBO of different free fatty acids contents. Wax was the only constituent of RBO that significantly increased the viscosity (81.5%) of oil. Monoglycerides synergistically raised the viscosity of the oil (by 114.2%) and lowered the rate of wax settling. Although a reduction in the viscosity of the oil significantly decreased the refining loss, the minimum loss attained was still 20% more than the theoretically predicted value. This led us to conclude that some chemical constituents, such as monoglycerides, must be removed before dewaxing; thereafter, oryzanol and phospholipids have to be removed. One can get an oil free of wax, recover other by-products and reduce processing losses.  相似文献   

16.
γ-Oryzanol has important applications in food, cosmetic and pharmaceutical industries. The objective of this investigation is to isolate γ-oryzanol from residue obtained during the production of biodiesel from rice bran oil. Using rice bran oil as the feedstock, the content of γ-oryzanol could be raised to 16% by a series of steps, which include degumming and dewaxing, acid-catalyzed esterification and vacuum distillation. More than 95% low-boiling point components, such as free fatty acid and fatty acid methyl ester (biodiesel), were obtained as the distillate. After applying solvent extraction to the residue, γ-oryzanol content was increased from 16 to 35% with a recovery of 88%. Subsequent use of soxhlet extraction raised γ-oryzanol content to 47% with a recovery of 97%. Finally, after applying silica gel column chromatography, γ-oryzanol content was 83.79% with a recovery of 81.75%. The overall recovery was 69.82%.  相似文献   

17.
Sludges obtained as tank settlings from solvent-extracted rice bran oil have been shown to be rich sources of wax and fatty acids. The wax content is variable, being about 18% in one sample and about 39% in a second sample of sludge. The wax was bleached to light colour. The crude wax shows good compatibility with other types of waxes. The oil fraction of sludges is high in free fatty acids (over 70%), about three fourth of which could be vacuum-distilled directly to yield light-coloured fatty acids.  相似文献   

18.
In this study in order to introduce a new vegetable oil, oxidative stability and chemical characteristics of Pistacia khinjuk kernel oil (PKKO) as compared with P. atlantica kernel oil (PAKO) and extra virgin olive oil (EVOO) were investigated. Oxidative stability of studied oils was considered based on the conjugated diene value (CDV), carbonyl value (CV) and oil/oxidative stability index (OSI) through an 8‐h thermal process at 170 °C. Also, chemical characteristics [fatty acid composition, unsaponifiable matter (USM), total tocopherols (TT), total phenolics (TP) and total sterols (TS), iodine value, saponification number and waxes] of these oils were analyzed. The ratio of polyunsaturated fatty acids to saturated fatty acids and the oxidizability (Cox) value of PKKO (1.14 and 2.78; respectively) were between those of PAKO (2.37 and 4.23; respectively) and EVOO (1.14 and 2.78; respectively). USM content of the three studied oils was between 1.1 and 1.51 %. TT and TP contents of PKKO (619.4 and 26.6 ppm) were lower than those of PAKO (845.33 and 75.22 ppm) and higher than those of EVOO (365.23 and 19.78 ppm). TS contents of PKKO, PAKO and EVOO were 2,500, 2,150 and 3,800 ppm, respectively. Oxidative stability data indicated that PKKO is the most resilient oil against lipid oxidation, followed by PAKO and EVOO. CDV significantly increased by the lowest speed for PKKO, followed by PAKO and EVOO. Increase of CV and reduction of OSI for PKKO, PAKO and EVOO were 29.2, 128 and 338.7 and 32.8, 67.9 and 79.3 %; respectively.  相似文献   

19.
Rice bran meal is a very good source of protein along with other micronutrients. Rice bran meal has been utilized to produce protein isolates and respective protein hydrolysates for potential application in various food products. De-oiled rice bran meal, available from Indian rice bran oil extraction plants, was initially screened by passing through an 80-mesh sieve (yield about 70%). A fraction (yield-30%) rich in fibre and silica was initially discarded from the meal. The protein content of the through fraction increased from 20.8% to 24.1% whereas silica content reduced from 3.1% to 0.4%. Rice bran protein isolate (RPI) was prepared by alkaline extraction followed by acidic precipitation at isoelectric point. This protein isolate was hydrolysed by papain at pH 8.0 and at 37 degrees C for 10, 20, 30, 45 and 60 minutes. The peptides produced by partial hydrolysis had been evaluated by determining protein solubility, emulsion activity index (EAI), emulsion stability index (ESI), foam capacity and foam stability (FS). All protein hydrolysates showed better functional properties than the original protein isolate. These improved functional properties of rice bran protein hydrolysates would make it useful for various application especially in food, pharmaceutical and related industries.  相似文献   

20.
In the United States, sorghum is primarily used for animal feed and ethanol production but has potential to provide value-added coproducts including waxes and oil. The surface of sorghum contains 0.1–0.4% wax; however, wax extraction from whole kernels before fermentation may not be economical. An alternative method for this extraction could be facilitated through decortication, abrasion of the surface to remove bran. Decortication increases the starch content of decorticated sorghum, potentially improving ethanol yields, while concentrating wax and oil to the bran. Typically, oil (triacylglycerols) and waxes are extracted from bran in one extraction and waxes are precipitated from oil using cold temperatures then filtration. This research compared traditional fractionation (simulated with a two-step, single-temperature extraction) to a two-step, dual-temperature extraction, whereby oil is first extracted at room temperature and then waxes at elevated temperature. Extractions were performed using an accelerated solvent extractor with hexane or ethanol as solvents. Ethanol extraction showed greater yields (~15% w/w) compared to those of hexane (~11% w/w) because polar materials were extracted. Using hexane, the two-step, dual-temperature fractionation separated waxes from oils via the temperature of extraction solvent with similar purity to the traditional method that fractionated via cold precipitation and filtration. For ethanol, the traditional single-step method fractionated with higher wax purity but lower oil purity compared to the two-step, dual-temperature fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号