首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Wei Chen  Wei Liu 《Renewable Energy》2006,31(4):517-535
In this paper, heat transfer and flow in a lean-to passive solar greenhouse has been studied. A mathematical model based on energy equilibrium and a one-dimensional mathematical model for the unsaturated porous medium have been founded and developed to predict the temperature and moisture content in soil and the enclosed air temperature in the greenhouse. On the condition that plant and massive wall is neglected, the air is mainly heated by the soil surface in the greenhouse, which absorbs the incident solar radiation. With increase in depth, the variation of the temperature and moisture content in soil decreases on account of ambient, and the appearance of the peak temperature in soil postpone. Solar radiation absorber, heat storage and insulation are the main effects of the north massive wall on greenhouse, which is influenced by the structure and the material. The specific heat capacity and thermal conductivity of wall material have a remarkable effect on the north wall temperature. The build-up north wall with thermal insulation material may be chosen for greenhouse. The temperature distribution and gas flow in greenhouse is influenced by the cover material of the inside surface of the north wall and the inclined angle of greenhouse roof. All results should be taken into account for a better design and run of a greenhouse.  相似文献   

2.
In this communication, thermal model of a greenhouse has been developed by incorporating the effect of water wall in the north side. Various temperatures, namely plant, water wall and room temperatures as a function of climatic and design parameters have been obtained by solving coupled single-order differential equation using Runge–Kutta method. Numerical methods have been carried out for a typical day of winter for Delhi condition. It has been observed that there is significant effect in the plant, room air and water temperatures due to change in fraction of solar radiation incident on north wall (Fn) and heat capacity of water wall. Experimental validation of the proposed model for a greenhouse with brick north wall has also been carried out. It has been observed that there is a fair agreement between experimental and theoretical values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The concept of thermal energy storage in building gains a specific importance in the present energy scenario related to energy consumption and indoor thermal comfort. The material used to store the thermal energy which undergoes a phase change referred as PCM and it is considered as a possible solution for reducing energy consumption in the building by storing and releasing heat within a certain temperature range; it raises the building inertia and also stabilizes indoor air temperature fluctuations. The room temperature is controlled by imposing PCM inside the walls. An attempt has been made to compare room air temperature with and without the use of PCM inside the walls of constructed modular building unit. The PCM imposed modular building shows the reduced temperature fluctuations in room, the PCM absorbs and liberates excess heat which is gained from the outer side of the room and maintains constant inner room temperature. The PCM imposed walls of modular building unit have an ability to reduce 10–30% of heat load in comparison with the plain wall. The results showed that reduction in room temperature is about 2–4°C and it has been concluded that the PCM imposed modular building unit has more energy saving opportunities than normal modular building unit.  相似文献   

4.
Thermal analysis of a direct-gain room with shape-stabilized PCM plates   总被引:1,自引:0,他引:1  
The thermal performance of a south-facing direct-gain room with shape-stabilized phase change material (SSPCM) plates has been analysed using an enthalpy model. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM (melting temperature, heat of fusion and thermal conductivity), inner surface convective heat transfer coefficient, location and thickness of the SSPCM plate, wall structure (external thermal insulation and wallboard material) etc. The results show that: (1) for the present conditions, the optimal melting temperature is about 20 °C and the heat of fusion should not be less than 90 kJ kg−1; (2) it is the inner surface convection, rather than the internal conduction resistance of SSPCM, that limits the latent thermal storage; (3) the effect of PCM plates located at the inner surface of interior wall is superior to that of exterior wall (the south wall); (4) external thermal insulation of the exterior wall obviously influences the operating effect and period of the SSPCM plates and the indoor temperature in winter; (5) the SSPCM plates create a heavyweight response to lightweight constructions with an increase of the minimum room temperature at night by up to 3 °C for the case studied; (6) the SSPCM plates really absorb and store the solar energy during the daytime and discharge it later and improve the indoor thermal comfort degree at nighttime.  相似文献   

5.
The efficacy of integrating organic coconut oil (co-oil) phase-change material (PCM) into an unconditioned building with a lightweight envelope is explored experimentally and numerically for heat gain reduction. In what we think is the first test of its kind for co-oil PCM, twin side-by-side single-room buildings (with and without PCM) are constructed and studied experimentally under ambient weather conditions. The effects of the co-oil on the thermal performance of the buildings are investigated with respect to the window orientation (east, west, north and south). Furthermore, numerical simulation of the buildings is carried out to evaluate the contribution of the co-oil to their thermal performance and to determine the effect of the co-oil layer thickness on the heat storage capacity. Moreover, by employing a simplified heat transfer analysis, an approximate relation for the optimal thickness of co-oil PCM layer is developed. Experimental and numerical results show that co-oil PCM can be a promising solution to improve the indoor thermal environment. It is found that with a south-facing window equipped with co-oil PCM, the indoor temperature is lowered by 23.8% compared to the case without PCM, when an optimal PCM layer of ~4 cm in thickness is embedded in the wall.  相似文献   

6.
This paper presents a time-dependent periodic heat transfer analysis of a non-air-conditioned building having a south-facing wall of phase-changing component material (PCCM). A rectangular room (6 × 5 × 4 m) based on the ground is considered. The effects of heat transfer through walls and roof, heat conduction to the basement ground and furnishings, heat gain through window and heat loss due to air ventilation have been incorporated in the periodic time-dependent heat transfer analysis. The time-dependent heat flux through the PCCM south-facing wall has been obtained by defining the effective thermal properties of the PCCM for a conduction process with no phase change. Numerical calculations are made for a typical mild winter day (7 March 1979) at New Delhi for heat flux entering through the wall and inside air temperature. Further, a PCCM wall of smaller thickness is more desirable, in comparison to an ordinary masonry concrete wall, for providing efficient thermal energy storage as well as excellent thermal comfort in buildings.  相似文献   

7.
This paper describes an analysis of the periodic heat transfer through thermal storage walls and roof pond systems subjected to periodic solar radiation and atmospheric air on one side and in contact with room air at constant temperature (corresponding to air-conditioned rooms) on the other. A one-dimensional heat conduction equation for temperature distribution in the walls and roof has been solved using the appropriate boundary conditions at the surfaces; explicit expressions for the periodic heat flux through storage walls and the roof have been derived. Numerical calculations for the periodic heat flux into the room have been made in order to assess the relative thermal performance of storage walls and roof pond systems in both winter and summer. It is found that a thermal storage mass wall is preferable for longer heat storage times while a water wall is suitable for rapid heat dissipation into the living space. For New Delhi, a roof pond system comprised of water-concrete-insulation, in ascending order of thickness, in the summer and in descending order of thickness in the winter, is found to be most desirable, whereas a combination with an ascending order of thickness is more appropriate for a typical cold climate like that of Boulder, Colorado, USA.  相似文献   

8.
An explicit expression for the periodic variation of thermal flux through a multilayered insulated hollow wall/roof, whose one face is exposed to solar radiation and ambient air and the other is in contact with room air at constant temperature, has been derived. to obtain optimum placement of insulation and airgap, numerical calculations for the heat flux through a multilayered insulated hollow wall/roof have been made for a typical hot day (26 May 1978) in Delhi. It is seen that for a given total thickness of concrete, best load levelling is achieved when the thickness of the outer layer is as small as possible. the effect of a water film on heat flux into the buidling has also been discussed.  相似文献   

9.
Here, a simplified analytical model has been proposed to predict solid fraction, solid–liquid interface, solidification time, and temperature distribution during solidification of phase change material (PCM) in a two‐dimensional latent heat thermal energy storage system (LHTES) with horizontal internal plate fins. Host of boundary conditions such as imposed constant heat flux, end‐wall temperature, and convective air environment on the vertical walls are considered for the analysis. Heat balance integral method was used to obtain the solution. Present model yields closed‐form solution for temperature variation and solid fraction as a function of various modeling parameters. Also, solidification time of PCM, which is useful in optimum design of PCM‐based thermal energy storages, has been evaluated during the analysis. The solidification time was found to be reduced by 93% by reducing the aspect ratio from 8 to 0.125 for constant heat flux boundary condition. While, for constant wall temperature boundary condition, the solidification time reduces by 99% by changing the aspect ratio from 5 to 0.05. In case of convective air boundary surrounding, the solidification time is found to reduce by 88% by reducing the aspect ratio from 8 to 0.125. Based on the analytical solution, correlations have been proposed to predict solidification time in terms of aspect ratio and end‐wall boundary condition.  相似文献   

10.
Lightweight envelopes are widely used in modern buildings but they lack sufficient thermal capacity for passive solar utilization. An attractive solution to increase the building thermal capacity is to incorporate phase change material (PCM) into the building envelope. In this paper, a simplified theoretical model is established to optimize an interior PCM for energy storage in a lightweight passive solar room. Analytical equations are presented to calculate the optimal phase change temperature and the total amount of latent heat capacity and to estimate the benefit of the interior PCM for energy storage. Further, as an example, the analytical optimization is applied to the interior PCM panels in a direct-gain room with realistic outdoor climatic conditions of Beijing. The analytical results agree well with the numerical results. The analytical results show that: (1) the optimal phase change temperature depends on the average indoor air temperature and the radiation absorbed by the PCM panels; (2) the interior PCM has little effect on average indoor air temperature; and (3) the amplitude of the indoor air temperature fluctuation depends on the product of surface heat transfer coefficient hin and area A of the PCM panels in a lightweight passive solar room.  相似文献   

11.
This communication presents an investigation of the thickness distribution of a given total thickness of the insulation inside and outside a thermal storage water wall for acheiving the maximum load levelling of the heat flux entering through the wall. Analysis is based on the solution of the heat conduction equation for the temperature distribution in the insulated wall subjected to periodic solar radiation and atmospheric air on one side and in contact with room air at constant temperature (corresponding to air-conditioned rooms) on the other side. an explicit solution for a temperature distribution satisfying the apporpriate boundary conditions at the surface has been derived to obtaing a periodic heat flux through the storage water wall. It is found that for a given total thickness (cost) of insulation the thicknesses of outside and inside insulation must be equal for best load levelling. Moreover, more load levelling is achieved when the whole of the insulation is outside rather than inside the thermal storage water wall.  相似文献   

12.
Both cool roof and phase change thermal storage are promising technologies in decreasing building energy consumption. Combining these two technologies is likely to further enhance the thermal comfort of the building as well as reduce air condition loads. In this paper, the cooling performance and energy-saving effects of four types of roof (normal roof, phase change material [PCM] roof, cool roof, and cool PCM roof [cool roof coupled with PCM]) were investigated under a simulated sunlight. Experimental results indicate that compared with normal roof, the other three roofs are able to narrow the indoor temperature fluctuation and decrease the heat flow entering into the room. Among them, cool PCM roof gave the best energy-saving effect that can lower the indoor temperature and heat entering into rooms by 6.6°C and 52.9%, respectively. Besides, the PCM location, PCM thickness, and insulation thickness exerted great impacts on the cooling performance of the roof. Placing the PCM on the internal layer beneath the extruded polystyrene (XPS) insulation board can make the indoor temperature 1.2°C lower than that on the middle layer. Although thicker PCM panels or insulation boards can provide a better thermal insulation, 5 mm in PCM thickness and 20 mm in insulation thickness are enough to guarantee the indoor temperature of cool PCM roof system at a comfortable range (22°C-28°C) for a whole day. These findings will give guidance in designing buildings with a light and compact roof structure to decrease energy consumption and improve comfort level.  相似文献   

13.
《Energy Conversion and Management》2005,46(15-16):2592-2604
Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given.  相似文献   

14.
A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 °C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C++ for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004–2005 at Chandigarh (31°N and 78°E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6–7 K and 5–6 K below ambient, respectively for an extreme summer day and 7–8 K and 5–6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature.  相似文献   

15.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
In the present paper, an attempt has been made to develop a computer model based on transient analysis of the greenhouse. The model predicts room air temperature, storage water temperature and the thermal energy storage effect of a water mass in a low cost, passive greenhouse. Analytical expressions, based on an energy balance for each component, have been derived in terms of climatic as well as design parameters. Numerical computations have been done on typical days for the months from December 1999 to June 2000 at New Delhi. It has been observed that (i) there is a significant thermal energy storage effect of the water mass on room temperature and (ii) TLL, which is found to decrease with an increase in the mass of storage water, varies with month of year. An experimental validation of the developed model has also been demonstrated. The predicted room and water temperature show fair agreement with experimental values.  相似文献   

17.
The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl26H2O was used as PCM in thermal energy storage with a melting temperature of 29 °C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18–23% of total daily thermal energy requirements of the greenhouse for 3–4 h, in comparison with the conventional heating device.  相似文献   

18.
A numerical model is presented to determine the thermal shielding performance of an exterior wall (e.g., building envelope) containing layers of PCMs. The model is exploited to perform a parametric study to assess the influence of the position and melting temperature of one PCM layer. Results showed that benefits are to be expected when the interior and exterior temperatures are close. Then, the wall composition has been optimized with a genetic algorithm based on a yearly analysis with the possibility of including several PCM layers. Idealized weather conditions and measured weather conditions (including solar radiation) have been considered. Results showed that for Québec City, optimal south-facing wall includes one PCM layer when real weather data are considered. Its effect is to shield the heat transfer in the summer. This paper provides a fundamental understanding of multilayer walls with PCMs.  相似文献   

19.
An insulated north wall greenhouse dryer has been fabricated and tested for no-load condition under passive mode. Testing has been conducted in two different cases. Case-I is considered for solar collector kept inside the dryer and Case-II is dryer without solar collector. Convective heat transfer coefficient and various heat transfer dimensionless numbers with have been calculated for thermal analysis. The maximum convective heat transfer coefficient is found 52.18?W/m2°C at 14?h during the first day for Case-I. The difference of the highest convective heat transfer coefficient of both cases was 8.34?W/m2°C. Net heat gain inside room curves are uniform and smooth for Case-I, which shows the steady heat generation process due to presence of solar collector inside the dryer. Above results depicts the effectiveness of solar collector and insulated north wall. The selection of suitable crop for drying can be done by analysing article’s result.  相似文献   

20.
This paper investigates the viability of increasing solar gains through the roof of an air-conditioned room using the thermal trap effect. In solving the heat conduction equations through the thermal trap and the concrete slab, the finite difference method has been employed and the initial conditions are derived from the assumption that, initially, the ceiling of the room and the top of the trap material are in equilibrium with constant room air temperature and the ambient air temperature, respectively. The effect of the thickness of the thermal trap and that of the concrete slab on the thermal flux transferred through the roof have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号