首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composites of different natural fibers and polypropylene were prepared and their long‐term water absorption behaviors were studied. Wood flour, rice hulls, newsprint fibers, and kenaf fibers (at 25 and 50% by weight contents) were mixed with polypropylene and 1 and 2% compatibilizer, respectively. Water absorption tests were carried out on injection‐molded specimens at room temperature for 5 weeks. Measurements were made every week and water absorption was calculated. Water diffusion coefficients were also calculated by evaluating the water absorption isotherms. Results indicated a significant difference among different natural fibers, with kenaf fibers and newsprint fibers exhibiting the highest and wood flour and rice hulls the lowest water absorption values, respectively. The difference between 25 and 50% fiber contents for all composite formulations increased at longer immersion times. Water diffusion coefficients of the composites were found to be about 3 orders of magnitude higher than that of pure PP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
The electric self‐heating behavior of carbon black (CB) filled high‐density polyethylene (HDPE) was studied in relation to the time‐dependent current and surface temperature under various voltages and to the voltage‐dependent surface temperature at electric–thermal equilibrium. The resistance increase due to self‐heating restricts the current flow through the sample and thus stabilizes the electric power and the self‐heating temperature to their saturation values, which vary with the voltage. A simple phenomenological model shows that self‐heating at electric‐thermal equilibrium is involved in the initial resistance, the electric field induced positive temperature coefficient (PTC) transition and the heat dissipation. The influences of annealing and irradiation crosslinking on the self‐heating behavior are discussed. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead‐filled low‐density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999  相似文献   

4.
This article presents the tensile properties and morphological characteristics of binary blends of the high‐density polyethylene (HDPE) and a linear low‐density polyethylene (LLDPE). Two constituents were melt blended in a single‐screw extruder. Injection‐molded specimens were evaluated for their mechanical properties by employing a Universal tensile tester and the morphological characteristics evaluated by using a differential scanning calorimeter and X‐ray diffractometer. It is interesting to observe that the mechanical properties remained invariant in the 10–90% LLDPE content. More specifically, the yield and breaking stresses of these blends are around 80% of the corresponding values of HDPE. The yield elongation and elongation‐at‐break are around 65% to corresponding values of HDPE and the modulus is 50% away. Furthermore, the melting endotherms and the crystallization exotherms of these blends are singlet in nature. They cluster around the corresponding thermal traces of HDPE. This singlet characteristic in thermal traces entails cocrystallization between these two constituting components. The clustering of thermal traces of blends near HDPE meant HDPE‐type of crystallites were formed. Being nearly similar crystallites of blends to that of HDPE indicates nearness in mechanical properties are observed. The X‐ray diffraction data also corroborate these observations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2604–2608, 2002  相似文献   

5.
This article reports the toughness improvement of high‐density polyethylene (HDPE) by low‐density polyethylene (LDPE) in oscillating packing injection molding, whereas tensile strength and modulus are greatly enhanced by oscillating packing at the same time. Compared with self‐reinforced pure HDPE, the tensile strength of HDPE/LDPE (80/20 wt %) keeps at the same level, and toughness increases. Multilayer structure on the fracture surface of self‐reinforced HDPE/LDPE specimens can be observed by scanning electron microscope. The central layer of the fracture surface breaks in a ductile manner, whereas the break of shear layer is somewhat brittle. The strength and modulus increase is due to the high orientation of macromolecules along the flow direction, refined crystallization, and shish‐kebab crystals. Differential scanning calorimetry and wide‐angle X‐ray diffraction find cocrystallization occurs between HDPE and LDPE. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 799–804, 1999  相似文献   

6.
The dependence of hierarchy in crystalline structures and molecular orientations of high density polyethylene parts with different molecular weights molded by gas‐assisted injection molding (GAIM) was intensively examined by scanning electron microscopy, two‐dimensional wide‐angle X‐ray scattering as well as dynamic rheological measurements. The non‐isothermal crystallization kinetics of the samples were also analyzed with a differential scanning calorimeter at various scanning rates. It was found that oriented lamellar structure, shish‐kebab and common spherulites were formed in different regions of the GAIM samples. The scanning electron microscope observations were consistent with the two‐dimensional wide‐angle X‐ray scattering results and showed that the molecular chains near the mold wall had strong orientation behavior, revealing the distribution of the shear rate of the GAIM process. The differences in crystal morphologies can be attributed to molecular weight differences as well as their responses to the external fields during the GAIM process. The formation mechanism of the shish‐kebab structure under the flow field of GAIM was also explored. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
The effect of chemical modification of both fiber and matrix on melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variations of melt viscosity with different shear rate and shear stress values for different temperatures were studied. A temperature range of 130 to 150°C and shear rates of 16.4 to 5468 s?1 were chosen for the analysis. Chemical modifications with stearic acid, maleic anhydride, silane, and peroxides were tested for their ability to improve the interaction between the matrix and fiber. The viscosity of the hybrid composites increases with every chemical modification. In the case of peroxide‐treated composites, the increase can be attributed to the peroxide‐induced grafting of the polyethylene matrix to the fiber surface and to the crosslinking of the polyethylene matrix. These phenomena are both activated by temperature, whereas temperature causes a reverse effect for all other chemical modifications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 443–450, 2003  相似文献   

8.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
A new self‐designed mechanochemical reactor, inlaid pan‐mill, was used in studying high density polyethylene (HDPE). The effects of pan‐milling stress on the structure and properties of HDPE were investigated. Gel permeation chromatography, melt indexer, Fourier transformed infrared spectroscopy, electron spectroscopy for chemical analysis, differential scanning calorimetry, X‐ray diffraction, capillary rheometer, and Instron material testing system were used to characterize the structures and evaluate the properties of HDPE. The results showed that mechanochemical degradation of HDPE occurred under the stress fields of pan‐mill, the molecular weight of HDPE was reduced, and HDPE with higher initial molecular weights were easier to degrade under the stress fields. Oxygen‐containing groups such as COOH, C=O, and C—O were introduced to HDPE chains as a result of degradation during milling. Crystallinity of HDPE first decreased slightly followed by gradual increases with increasing milling times; monoclinic crystals appeared after four cycles of milling and increased markedly with increasing milling times. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than unmilled HDPE. After milling, mechanical properties were improved. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2016–2024, 2000  相似文献   

10.
The melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variation of melt viscosity with shear rate and shear stress at different temperatures was studied. The effect of relative composition of component fibers on the overall rheological behavior also was examined. A temperature range of 130 to 150°C and shear rate of 16.4 to 5470 s?1 were chosen for the analysis. The melt viscosity of the hybrid composite increased with increase in the volume fraction of glass fibers and reached a maximum for the composite containing glass fiber alone. Also, experimental viscosity values of hybrid composites were in good agreement with the theoretical values calculated using the additive rule of hybrid mixtures, except at low volume fractions of glass fibers. Master curves were plotted by superpositioning shear stress and temperature results. The breakage of fibers during the extrusion process, estimated by optical microscopy, was higher for glass fiber than sisal fiber. The surface morphology of the extrudates was analyzed by optical and scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 432–442, 2003  相似文献   

11.
The time dependences of electrical conduction and self‐heating behaviors in high‐density polyethylene filled with acetylene carbon black of 0.082 in volume fraction are studied in relation to voltage and ambient temperature. The characteristic decay current constant τi, and the exponential growth time constant for self‐heating τg are determined for the samples under voltages U above the critical value Uc for the onset of self‐heating. The influences of voltage and ambient temperature on τi and τg as well as the amplitude of the low‐resistance to high‐resistance switching are discussed on the basis of the random resistor network (RRN) model and the relationship between Uc and the intrinsic resistivity. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1124–1131, 2006  相似文献   

12.
In this study, a particular interest was focused on the recovery of lignocellulosic waste of olive husk flour (OHF) by its incorporation as filler in manufacturing composite materials based on high‐density polyethylene (HDPE) matrix with various filler contents (10, 20, and 30 wt %). The problem of incompatibility between the hydrophilic filler and the hydrophobic matrix was treated with two methods: the first method consists of using maleic anhydride‐grafted polyethylene (MAPE) as compatibilizer in HDPE/OHF composites. The second method, was focused on the chemical modification of OHF by vinyl‐triacetoxy‐silane (VTAS). Fourier transform infrared spectroscopy is used to analyze both grafting and silanization reactions involved. Scanning electron microscopy was used to show the morphology of the flour surface. Furthermore, the physicomechanical and thermal characteristics of the various composite samples were investigated as a function of filler contents and treatment types. The results showed that the properties of the composite materials are positively affected by the silanization treatment of OHF and also by MAPE addition. However, better mechanical and thermal properties with less moisture absorption were obtained for the composite materials compatibilized with MAPE. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The natural fibers (banana, hemp, and sisal) and high density polyethylene were taken for the preparation of natural fiber/polymer composites in different ratios of 40 : 60 and 45 : 55 (w/w). These fibers were esterified with maleic anhydride (MA) and the effect of esterification of MA was studied on swelling properties in terms of absorption of water, at ambient temperature, and steam. It was found that the steam penetrates more within lesserperiod of time than water at ambient temperature. Untreated fiber composites show more absorption of steam and water in comparison to MA‐treated fiber composites. The more absorption of water was found in hemp fiber composites and less in sisal fiber composites. Steam absorption in MA‐treated and untreated fiber composites are higher than the water absorption in respective fiber composites. The natural fiber/polymer composites containing low amount of fibers show less absorption of steam and water at ambient temperature than the composites containing more amount of fibers in respective fiber composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Rice straw fiber‐high density polyethylene (HDPE) composites were prepared to investigate the effects of rice straw fiber morphology (rice straw refined fiber, rice straw pellet, rice straw strand), fiber content (20 and 40 wt %), and maleic anhydride polyethylene (MAPE) concentration (5 wt %) on the mechanical and thermal properties of the rice straw fiber‐HDPE composites in this study. Rice straw refined fiber exhibited more variability in length and width, and have a higher aspect ratio of 16.3. Compared to the composites filled of rice straw pellet, the composites made of the refined fiber and strand had a slightly higher tensile strength and lower tensile elongation at break. The tensile and flexural strength of the composites increased slightly with increasing rice straw fiber content up to 40 wt %, while the tensile elongation at break decreased. With addition MAPE, the composites filled with 20 wt % rice straw fiber showed an increase in tensile, flexural and impact strength and a decrease in tensile elongation at break. Differential scanning calorimetry showed that the fiber addition and morphology had no appreciable effect on the crystallization temperature of the composites but decreased the crystallinity. The scanning electron microscopy observation on the fracture surface of the composites indicated that introduction of MAPE to the system resulted in promotion in fiber dispersion, and an increase in interfacial bonding strength. Fiber breakage occurred significantly in the composites filled with refined fiber and strand after extruding and injection processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The electrical resistivity of high‐density polyethylene (HDPE) loaded with carbon black (CB) blends was evaluated as a function of the blending time and the melt index of HDPE. The relationship between the positive temperature coefficient effect and the room temperature volume resistivity was investigated. The positive temperature coefficient effect and reproducibility were improved significantly when the blending time of HDPE and CB was comparatively long. The effects of 60Co γ‐ray and electron beam irradiation on the positive and negative temperature coefficient behavior of the blends were studied. The effect of thermal aging on the volume resistivity was studied to ascertain the structural stability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2440–2446, 2002  相似文献   

16.
The effect of ethylene–propylene–diene terpolymer (EPDM), dicumyl peroxide (DCP), and dimethyl silicone oil on the mechanical properties of high‐density polyethylene (HDPE) composites filled with 60 mesh cryogenically scrap rubber powder (SRP) was studied. The addition of 10 wt % EPDM, 0.2 wt % DCP, and 4 wt % dimethyl silicone oil significantly increased both the impact strength and elongation at break of the HDPE/SRP composites. After the modification, the impact strength increased by 160%, and the elongation at break increased by 150% for the composites containing 40 wt % SRP. The impact load–time curves showed that the increase of impact energy for the modified composites was attributed to the increase of the maximum force at yield point and the ductile deformation after yielding. The rheological behavior, dynamic mechanical properties, and morphology observation suggested that an enhanced adhesion between SRP and polymer matrix formed in the modified HDPE/SRP composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2020–2027, 2003  相似文献   

17.
Carbon black (CB) filled high‐density polyethylene (HDPE) composites are prepared by ordinary blending for use as an electrical conductive polymer composite. The composite changes from an electrical insulator to a conductor as the CB content is increased from 10 to 20 wt %, which is called the percolation region. For explanatory purposes, three models, namely, “conduction via nonohmic contacting chain,” “conduction via ohmic contacting chain,” and a mixture of them corresponding to the conductions in the percolation region, high CB loading region, and limiting high CB loading are proposed by the reasonable configurations of aggregate resistance, contact resistance, gap capacitance, and joining aggregates induction. The characters of the impedance spectra based on the three models are theoretically analyzed. In order to find some link between the electrical conductivity and the CB dispersion manner in the composites, the impedance spectra of three samples, HDPE/15 wt % CB (the center of the percolation region), HDPE/25 wt % CB (a typical point in the high CB loading region), and HDPE/19 wt % CB (the limiting high CB loading region), are measured by plotting the impedance modulus and phase angle against the frequency and by drawing the Cole–Cole circle of the imaginary part and real part of the impedance modulus of each sample. The modeled approached spectra and the spectra measured on the three samples are compared and the following results are found: the measured impedance spectrum of HDPE/15 wt % CB (percolation region) is quite close to the model of conduction via nonohmic contacting chain. The character of the measured spectrum of HDPE/25 wt % CB consists of the form of the model of conduction via ohmic contacting chain. The impedance behavior of HDPE/19 wt % CB exhibits a mixture of the two models. From the comparisons, it is concluded that the electrical conducting network in the percolation region of the CB filled HDPE composite is composed of aggregate resistance, nonohmic contact resistance, and gap capacitance, and that of the high CB loading region consists of continuously joined CB aggregate chains, which are possibly wound and assume helix‐like (not straight lines) conductive chains, acting as electrical inductions as the current passes through. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1344–1350, 2005  相似文献   

18.
The effects of ultrasonic oscillations on the rheological behavior, mechanical properties, and morphology of high‐density polyethylene (HDPE)/polystyrene (PS) blends were studied. The experimental results show that the die pressure and apparent viscosity of HDPE/PS blends are remarkably reduced in the presence of ultrasonic oscillations and that mechanical properties of the blends are improved. The particle size of the dispersed phase in HDPE/PS blends becomes smaller, its distribution becomes narrower, and the interfacial interaction of the blends becomes stronger if the blends are extruded in the presence of ultrasonic oscillations. Ultraviolet spectra and Soxhlet extraction results show the formation of a polyethylene‐PS copolymer during extrusion in the presence of ultrasonic oscillations, which improves the compatibility of HDPE/PS blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 23–32, 2002  相似文献   

19.
Polymer matrix composites are generally studied in the form of bulk solids, and very few works have examined composite fibers. The research described here extended such bulk studies to fibers. The question is whether or not what has been reported for bulk polymers will be the same in fibers. In this article are reported studies of high‐density polyethylene (HDPE), whereas those of linear low‐density polyethylene are reported in part II of this article series. Two types of filler were used, that is, organically modified montmorillonite (OMMT), in which the nanosized filler particles had a high aspect ratio, and microsized calcium carbonate (CaCO3), with an aspect ratio nearer to unity. Composite fibers of both as‐spun and highly drawn forms were prepared, and their structures, morphology, and mechanical properties were studied. It was found that the microsized particles gave HDPE composite fibers with mechanical properties that were the same as those of the neat polymer. In the case of clay composite fibers, the clay interfered with the yield process, and the usual yield point could not be observed. The particle shape did not affect the mechanical properties. The fibers showed different deformation morphologies at low draw ratios. The CaCO3 composite fibers showed cavities, which were indicative of low interaction between the polymer and the filler. The OMMT composite fibers showed platelets aligned along the fibers and good polymer–filler interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The mechanical properties and water absorption of low‐density polyethylene/sawdust composites were investigated. The relationship between the filler content and the composite properties was also studied. Different degrees of esterification of the sawdust with maleic anhydride were obtained with different reaction times. The experimental results demonstrated that the treatment of sawdust by maleic anhydride enhanced the tensile and flexural strengths. The water absorption for maleic anhydride treated sawdust indicated that it was more hydrophobic than untreated sawdust. The effects of the addition of benzoyl peroxide during the preparation of composite samples on the water absorption and mechanical properties were also evaluated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号