首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of different natural fibers and polypropylene were prepared and their long‐term water absorption behaviors were studied. Wood flour, rice hulls, newsprint fibers, and kenaf fibers (at 25 and 50% by weight contents) were mixed with polypropylene and 1 and 2% compatibilizer, respectively. Water absorption tests were carried out on injection‐molded specimens at room temperature for 5 weeks. Measurements were made every week and water absorption was calculated. Water diffusion coefficients were also calculated by evaluating the water absorption isotherms. Results indicated a significant difference among different natural fibers, with kenaf fibers and newsprint fibers exhibiting the highest and wood flour and rice hulls the lowest water absorption values, respectively. The difference between 25 and 50% fiber contents for all composite formulations increased at longer immersion times. Water diffusion coefficients of the composites were found to be about 3 orders of magnitude higher than that of pure PP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
Natural fiber polyethylene composites containing kenaf fibers, wood flour, newsprint, and rice hulls at 25 and 50% (by weight) fiber content were sampled and studied using thermogravimetric analysis (TGA). The effects of fiber type and content, compatibilizer and heating rate on the thermal stability and degradation of the composites were evaluated. Among different natural fibers, kenef fibers were found to be the least thermally stable ones whereas newsprint fibers proved to be the most stable fibers in composite formulations. Composites containing higher amounts of natural fiber degraded at a higher rate and exhibited higher weight loss. The presence of the compatibilizer resulted in composites with slower thermal degradation. Heating rate increased both temperature and rate of main degradation peaks. FTIR and DSC results are also presented to discuss phenomena leading to thermal degradation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

3.
Chemical resistance of natural fiber (wood flour, rice hulls, kenaf fiber, and newsprint) polypropylene composites was studied in terms of their weight loss and reduction of mechanical properties after 7 days immersion in chemical reagents. Composites containing 25 and 50% of various natural fibers and polypropylene were prepared and immersed in NaOH (10%), NaClO (bleach solution) (13%), HCl (10%), H2O2 (3%), soap solution (1%), and acetone. Results indicated that H2O2, soap solution, and acetone had very negligible effects on all composites. On the other hand, the effects of NaClO and HCl were found to be statistically significant. Different fibers exhibited different behaviors regarding their chemical resistance. Rice hulls composites were considerably affected by NaOH, whereas the same chemical reagent was ineffective on other fibers. The effects of bleach solution and HCl on the mechanical performance of the composites were found to be critical. Generally, it was concluded that bleach and acids had the highest effects on natural fiber polypropylene composites. POLYM. COMPOS. 27:563–569, 2006. © 2006 Society of Plastics Engineers  相似文献   

4.
The present study deals with the effects of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites using dynamic mechanical analysis. Composites of polypropylene and various natural fibers including kenaf fibers, wood flour, rice hulls, and newsprint fibers were prepared at 25 and 50% (by weight) fiber content levels. One and two percent maleic anhydride grafted polypropylene was also used as the compatibilizer for composites containing 25 and 50% fibers, respectively. Specimens for dynamic mechanical analysis tests were cut out of injection‐molded samples and were tested over a temperature range of ?60 to +120°C. Frequency of the oscillations was fixed at 1 Hz and the strain amplitude was 0.1%, which was well within the linear viscoelastic region. The heating rate was 2°C/min for all temperature scan tests. Storage modulus (E′), loss modulus (E″), and mechanical loss factor (tan δ) were collected during the test and were plotted versus temperature. An increase in storage and loss moduli and a decrease in the mechanical loss factor were observed for all composites indicating more elastic behavior of the composites as compared with the pure PP. Changes in phase transition temperatures were monitored and possible causes were discussed. Results indicated that glass transition was slightly shifted to lower temperatures in composites. α transition temperature was higher in the case of composites and its intensity was higher as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4341–4349, 2006  相似文献   

5.
Detailed analysis of the effects of recycling process on long‐term water absorption, thickness swelling, and water desorption behavior of natural fiber high‐density polyethylene composites is reported. Composite materials containing polyethylene and wood flour, rice hulls, or bagasse fibers and 2% compatibilizer were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis, Fourier transform infrared spectroscopy, and tensile tests were employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models and a mathematical model was developed for water desorption at constant temperature. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process. Water desorption was found to be faster after recycling. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
BACKGROUND: Renewable resources and recyclable thermoplastic polymers provide an attractive eco‐friendly quality as well as environmental sustainability to the resulting natural fibre‐reinforced composites. The properties of polypropylene (PP)‐based composites reinforced with rice hulls or kenaf fibres were investigated with respect to their recyclability. Rice hulls from rice processing plants and natural lignocellulosic kenaf fibres from the bast of the plant Hibiscus cannabinus represent renewable sources that could be utilized for composites. Maleic anhydride‐grafted PP was used as a coupling agent to improve the interfacial adhesion between fillers and matrix. Composites containing 30 wt% reinforcement were manufactured by melt mixing and their mechanical and thermal properties were determined. The composites were then pelletized and reprocessed by melt mixing. Finally, structure/properties relationships were investigated as a function of the number of reprocessing cycles. RESULTS: It is found that the recycling processes do not induce very significant changes in flexural strength and thermal stability of the composites. In particular PP‐based composites reinforced with kenaf fibres are less sensitive to reprocessing cycles with respect to PP‐based composites reinforced with rice hulls. CONCLUSION: The response of PP‐based composites reinforced with rice hulls or kenaf fibres is promising since their properties remain almost unchanged after recycling processes. Moreover, the recycled composites are suitable for applications as construction materials for indoor applications. In fact, the flexural strength and modulus of these materials are comparable to those of conventional formaldehyde wood medium‐density fibreboards. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
PLLA‐based eco‐composites reinforced with kenaf fiber and rice straw and containing red or yellow pigments have been studied. The mechanical behavior of the composites was tested by DMTA at two different annealing temperatures (65°C and 85°C) and times (15 min and 120 min) as well as at two preparation conditions: vacuum drying and long time at room temperature. A decrease of microhardness was observed during the water absorption tests. Moreover, the rice straw‐based composites absorbed more water than the kenaf‐ones. Generally, the dyed NFs composites presented better water resistance than undyed ones. The pigments improved the adhesion and led to better mechanical performance. The natural fibers favored the cold crystallization process of PLLA and shifted the cold crystallization peak temperature to lower values, as it was confirmed by DSC measurements. The values of tensile storage modulus obtained after different preparation condition were strongly affected by the process of physical ageing. According to, tan δ parameter, the samples stored at room temperature for a long time showed the highest amorphous content. The PLLA eco‐composite reinforced with kenaf fibers, dyed with the red pigment, and annealed at 85°C for 2 h displays the best mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated and untreated fiber and flour, the compatibility of PMS‐treated fiber and flour with polyethylene (PE), and the water sorption and volumetric swell of PMS‐treated fiber/flour plastic composites in a long‐term soaking test were evaluated. Fiber and flour treated with PMS increased the compatibility between the fiber/flour and the PE matrix. The increased compatibility of PMS‐treated fiber and flour with the matrix contributed to the reduction of water sorption and, thus, increased dimensional stability. For all composites, water sorption and volumetric swell of fiber/four plastic composites decreased as the ratio of fiber to flour increased. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Short glass fibers were added to poly(vinyl chloride) (PVC)/wood flour composites as reinforcement agents. Unnotched and notched impact strength of PVC/wood flour/glass fiber hybrid composites could be increased significantly without losing flexural properties by adding type L glass fibers and over 40% of PVC. There was no such improvement when using type S glass fiber. The impact strength of hybrid composites increased along with the increment of the type L glass fiber content at a 50% PVC content. At high PVC contents, impact fracture surfaces were characterized by wood particle, glass fiber breakage and pullout, whereas interfacial debonding was the dominant fracture mode at higher filler concentrations. The significant improvement in impact strength of hybrid composites was attributed to the formation of the three‐dimensional network glass fiber architecture between type L glass fibers and wood flour.  相似文献   

10.
Polypropylene (PP)/wood flour foamed composites were prepared by taking PP:wood flour in the ratios of 100 : 0, 90 : 10, 80 : 20, 70 : 30, and 60 : 40 (w/w), with and without compatibilizers like maleic anhydride‐treated wood flour and maleic anhydride‐grafted PP (PPgMA). The foamed composite samples were employed for water swelling at 27°C, 70°C, and in steam. The absorption of water increased with increase in filler contents for all three‐temperature conditions. The maleic anhydride‐treated wood flour and PPgMA showed reduction in water swelling, and the best one was in case of the PPgMA‐foamed composites for respective conditions. Diffusion, sorption, and permeation coefficients were determined to study the absorption kinetics. FTIR spectra were also recorded for 30 wt % of filler loading for all the composites, which showed the effect of compatibilizers on reduction in water absorption in foamed PP/wood flour composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2530–2537, 2006  相似文献   

11.
Dynamic modulus of elasticity (MoE) and shear modulus of wood‐filled polypropylene composite at various filler contents ranging from 10% to 50% was determined from the vibration frequencies of disc‐shaped specimens. Wood filler was used in both fiber form (pulp) and powder form (wood flour). A novel compatibilizer, m‐isopropenyl‐α,α‐dimethylbenzyl‐isocyanate(m‐TMI) grafted polypropylene with isocyanate functional group was used to prepare the composites. A linear increase in dynamic MoE, shear modulus, and density of the composite was observed with the increasing filler content. Between the two fillers, wood fiber filled composites exhibited slightly better properties. At 50% filler loading, dynamic MoE of the wood fiber filled composite was 97% higher than that of unfilled polypropylene. Halpin‐Tsai model equation was used to describe the changes in the composite modulus with the increasing filler content. The continuous improvement in elastic properties of the composites with the increasing wood filler is attributed to the effective reinforcement of low‐modulus polypropylene matrix with the high‐modulus wood filler. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1706–1711, 2006  相似文献   

12.
Kenaf fiber‐reinforced unsaturated polyester (UPE) composites were prepared by compression molding. A novel compatibilizer was prepared from melamine, formaldehyde, and acrylamide. The treatment of kenaf fibers with the compatibilizer significantly increased the flexural properties and reduced the water uptake of the resulting kenaf–UPE composites. The effects of the total solids content, the molar ratios of melamine/formaldehyde/acrylamide, and the pH value of the compatibilizer solution in the treatment of kenaf fibers on the flexural strength, flexural modulus, as well as the water uptake of the kenaf–UPE composites were studied in detail. Fourier transform infrared spectra revealed that the compatibilizer was covalently bonded to kenaf fibers. Scanning electron microscopy images of the fractured kenaf–UPE composites confirmed that the treatment of kenaf fibers with the compatibilizer improved the interfacial adhesion between kenaf fibers and UPE resin. The mechanisms for the improved flexural properties and the reduced water uptake by the treatments of the kenaf fibers were proposed and discussed. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

13.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

14.
This study concerns the preparation of eco‐composites based on natural fibers coming from wood and subproducts (rice husks) and products (kenaf) of annually grown plants. The matrices used were of two types: a biopolymer (PLA) and a petroleum‐derived polymer (HDPE). Results showed that natural fibers markedly increase the tensile and flexural properties of both polymers by extending the field of application of these materials with less use of nonrenewable resources. The properties obtained are comparable to commercially available fiber‐filled composites. Moreover, processing can easily be carried out in one step below a critical fiber volume. Fire and durability performance of the composites can be also improved by adding typical fire retardants and pigments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Lightweight composites are preferred for automotive applications due to the weight restrictions and also due to the presence of inherent voids that can enhance the sound absorption of these composites. The density of the reinforcing materials plays a crucial role in such lightweight composites. Milkweed is a unique natural cellulose fiber that has a completely hollow center and low density (0.9 g cm?3) unlike any other natural cellulose fiber. The low density of milkweed fibers will allow the incorporation of higher amounts of fiber per unit weight of a composite, which is expected to lead to lightweight composites with better properties. Polypropylene (PP) composites reinforced with milkweed fibers have much better flexural and tensile properties than similar PP composites reinforced with kenaf fibers. Milkweed fiber‐reinforced composites have much higher strength but are stiffer than kenaf fiber‐reinforced PP composites. Increasing the proportion of milkweed in the composites from 35 to 50% increases the flexural strength but decreases the tensile strength. The low density of milkweed fibers allows the incorporation of higher amounts of fibers per unit weight of the composites and hence provides better properties compared to composites reinforced with common cellulose fibers with relatively high density. This research shows that low‐density reinforcing materials can more efficiently reinforce lightweight composites. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
This article presents the effects of coupling agent and nanoclay (NC) on some properties of wood flour/polypropylene composites. The composites with different NC and maleic anhydride grafted polypropylene (MAPP) contents were fabricated by melt compounding in a twin‐screw extruder and then by injection molding. The mass ratio of the wood flour to polymer was 40/60 (w/w). Results showed that applying MAPP on the surface of the wood flour can promote filler polymer interaction, which, in turn, would improve mechanical properties of the composite as well as its water uptake and thermal stability. Composite voids and the lumens of the fibers were filled with NC, which prevented the penetration of water by the capillary action into the deeper parts of composite. Therefore, the water absorption in composites fabricated using NC was significantly reduced. Scanning electron microscopy has shown that the treatment of composites with 5 wt% MAPP, promotes better fiber–matrix interaction, resulting in a few numbers of pull‐out traces. In all cases, the degradation temperatures shifted to higher values after using MAPP. The largest improvement on the thermal stability of composites was achieved when NC was added. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

17.
The water‐resistance properties of wood‐fiber‐reinforced recycled plastic composites (WRPCs) prepared from postconsumer high‐density polyethylene (HDPE) and wood fibers from saw mills were studied. Three methods consisting of an alkaline method (AM), a silane method (SM), and a combination of the alkaline and silane methods (ASM) were used to modify the wood fibers. The effects of fiber/matrix mix ratio and surface treatment on the moisture content, thickness swelling, and flexural strength change of the WRPCs, before and after immersion in 60°C water for 8 weeks, were studied and analyzed. The flexural fractured surfaces of the WRPCs before and after immersion in hot water were examined, and the fracture mechanism of the WRPCs was discussed. The results showed that the different surface treatments of the wood fibers had significant effects on the moisture content, thickness swelling, and flexural strength of the WRPCs after a long immersion time in hot water. For WRPCs treated by ASM, the moisture content was the lowest, the thickness swelling was at a minimum, and the flexural strength was the highest. Higher water absorption of composites with fiber treated by the AM or SM methods, as compared to those treated by ASM, could be attributed to the incomplete adhesion and wettability between the wood fibers and the polymer matrix, which may have caused more gaps and flaws at the interface. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

18.
The physicomechanical properties, thermal properties, odor, and volatile organic compound (VOC) emissions of natural‐flour‐filled polypropylene (PP) composites were investigated as a function of the zeolite type and content. The surface area and pore structure of the natural and synthetic zeolites were determined by surface area analysis and scanning electron microscopy, respectively. With increasing natural and synthetic zeolite content, the tensile and flexural strengths of the hybrid composites were not significantly changed, whereas the water absorption was slightly increased. The thermal stability and degradation temperature of the hybrid composites were slightly increased with increasing natural and synthetic zeolite content. At natural and synthetic zeolite contents of 3%, the various odors and VOC emissions of the polypropylene/rice husk flour and polypropylene/wood flour hybrid composites were significantly reduced because of the absorption of the odor and VOC materials in the pore structures of the natural and synthetic zeolites. These results suggest that the addition of natural and synthetic zeolites to natural‐flour‐filled thermoplastic polymer composites is an effective method of reducing their odor and VOC emissions without any degradation of their mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
In this research, fully environment‐friendly, sustainable and biodegradable composites were fabricated, using wheat straw and rice husk as reinforcements for thermoplastics, as an alternative to wood fibers. Mechanical properties including tensile, flexural, and impact strength properties were examined as a function of the amount of fiber and coupling agent used. In the sample preparation, three levels of fiber loading (30, 40, and 50 wt %) and two levels of coupling agent content (0 and 2 wt %) were used. As the percentage of fiber loading increased, flexural and tensile properties increased significantly. Notched Izod results showed a decrease in strength as the percentage of fiber increases. With addition of 50% fiber, the impact strengths decreased to 16.3, 14.4, and 16.4 J/m respectively, for wheat straw‐, rice husk‐, and poplar‐filled composites. In general, presence of coupling agent had a great effect on the mechanical strength properties. Wheat straw‐ and rice husk‐filled composites showed an increase in the tensile and flexural properties with the incorporation of the coupling agent. From these results, we can conclude that wheat straw and rice husk fibers can be potentially suitable raw materials for manufacturing biocomposite products. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Effective interfacial adhesion between wood fibers and plastics is crucial for both the processing and ultimate performance of wood–plastic composites. Coupling agents are added to wood–plastic composites to promote adhesion between the hydrophilic wood surface and hydrophobic polymer matrix, but to date no coupling agent has been reported for PVC/wood‐fiber composites that significantly improved their performance and was also cost‐effective. This article presents the results of a study using chitin and chitosan, two natural polymers, as novel coupling agents for PVC/wood‐flour composites. Addition of chitin and chitosan coupling agents to PVC/wood‐flour composites increased their flexural strength by ~20%, their flexural modulus by ~16%, and their storage modulus by ~33–74% compared to PVC/wood‐flour composite without the coupling agent. Significant improvement in composite performance was attained with 0.5 wt% of chitosan and when 6.67 wt% of chitin was used. J. VINYL ADDIT. TECHNOL., 11:160–165, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号