首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
对以环氧树脂为基体,不同混纺比的洋麻/棉混纺织物为增强体所制备的复合材料进行力学性能测试,从而优选最佳洋麻/棉混纺比。然后对最佳混纺比的洋麻/棉混纺织物进行阻燃处理,并测试其增强环氧树脂复合材料力学性能。结果表明,洋麻/棉(40/60)混纺织物增强环氧树脂复合材料力学性能最优,其拉伸强度和模量分别为101.9MPa和6.16GPa;弯曲强度和模量分别为189.64MPa和12.14GPa;剪切强度为17.47MPa。经过阻燃处理的洋麻/棉(40/60)混纺织物增强环氧树脂复合材料其拉伸强度和模量分别为67.85 MPa和5.81GPa;弯曲强度和模量分别为126.02 MPa和8.96GPa;剪切强度为13.62MPa;阻燃性能为自息时间0s,损毁长度4cm;其性能满足汽车零件性能要求,具有一定的实际应用性。  相似文献   

2.
对国产HF30F-24K碳纤维的力学性能、表截面形貌、单向和0°/90°经编织物性能及其复合材料性能进行了测试分析,结果表明:HF30F-24K碳纤维拉伸强度达到5000MPa以上,拉伸模量超过250GPa,且拉伸强度、拉伸模量和断裂伸长率的离散系数即Cv值全部低于5%,该产品具有较好的力学性能和稳定性,并具有典型的湿法纺丝工艺特点;HF30F-24K碳纤维单向织物经向断裂强力达到了3800N/25mm以上,0°/90°经编织物经向断裂强力超过了2800N/25mm,纬向断裂强力大于2600N/25mm; HF30F-24K碳纤维单向和0°/90°经编织物复合材料层间剪切强度分别为125.8MPa和77.2MPa,体现了湿法纺丝工艺碳纤维的界面结合优势,HF30F-24K碳纤维的单向和0°/90°经编织物预浸料复合材料也因此表现出较好的拉伸、压缩、弯曲性能。  相似文献   

3.
以高密度的环氧树脂 TDE-85作为基体,选择不同的固化剂,研制出了三种高模量高强度的树脂体系,并对其力学性能、微观结构、自由体积进行了研究。论文取得了如下创造性的研究成果:(1)制备了拉伸模量大于5.0GPa,压缩模量大于6.0GPa,拉伸强度大于80MPa 的树脂体系,并对其力学性能进行了测试,系统研究了模量与密度之间的关系,同时对其微观断口形貌进行了观察。(2)研究了高模量基体对玻璃纤维增强复合材料单向板各项性能的影响。结果表明,随着基体模量的提高,复合材料的拉伸性能、压缩性能、弯曲性能、剪切性能显著提高。玻璃纤维复合材料的压缩强度达1337.5MPa,弯曲强度达2324.6MPa。(3)利用纳米材料 SiO_2、TiO_2、α-Al_2O_3、改性双酚 A 型环氧树脂,解决了纳米柱子均匀分散的技术难题。系统研究了纳米拉子对环氧树脂拉伸模量、强度、冲击韧性、热变形温度的影响。以纳米 SiO_2、高强玻璃纤维共同增强环氧树脂,制备了纳米纤维环氧树脂复合材料。这一研究在国内尚未见报道。(4)利用正电子淹没技术测试了自由体积,首次用实验验证了模量与自由体积的密切关系。对于 TDE-85/胺体系,在环氧基/胺摩尔比相同的条件下,浇铸体密度降低,自由体积的尺寸与浓度增大,浇铸体的模量与玻璃化温度降低。纳米粒子的加入,使自由体积尺寸增大,自由体积浓度降低,模量与玻璃化温度升高。  相似文献   

4.
郑天麒 《功能材料》2022,(12):12147-12151
以环氧树脂E51为基础材料,碳纤维为增强材料,制备出了不同碳纤维掺杂量(0,3%,6%,9%(质量分数))的改性环氧树脂基复合材料,研究了碳纤维掺杂量对环氧树脂基复合材料力学性能、微观形貌、热稳定性和导热性能的影响。结果表明,适量碳纤维的掺杂提高了环氧树脂基复合材料的力学性能、热稳定性和导热性能。随着碳纤维掺杂量的增加,改性环氧树脂基复合材料的拉伸强度、断裂延伸率、弯曲强度和弯曲模量均先增大后降低,当碳纤维的掺杂量为6%时,复合材料的拉伸强度、断裂延伸率、弯曲强度和弯曲模量均达到了最大值,分别为48.5 MPa, 1.86%,85.6 MPa和3.09 GPa。随着碳纤维掺杂量的增加,复合材料的分解温度和残留量先升高后降低,当碳纤维的掺杂量为6%时,复合材料的分解温度和残留量达到最大,分别为453.7℃和4.9%。复合材料的导热系数随碳纤维掺杂量的增加而增大,当碳纤维的掺杂量<6%时,导热系数增长速率较快。综合分析可知,碳纤维的最佳掺杂量为6%。  相似文献   

5.
李琪  郭丽  李香兰 《功能材料》2023,(2):2231-2236
选择以T700碳纤维为增强相,将碳纤维经浓HNO3浸渍处理0,40,80,120和160 min后掺入到环氧树脂中,制备了碳纤维增强环氧树脂复合材料。分析了浸渍时间对复合材料微观形貌、力学性能和热稳定性的影响。结果表明,经浓HNO3浸渍的碳纤维表面粗糙度增大,沟槽数量和深度增加,碳纤维和环氧树脂的结合强度增大;随碳纤维浸渍时间的增大,复合材料的界面剪切强度、层间剪切强度、弯曲强度和弯曲模量均先增大后减小,当浸渍时间为120 min时,复合材料的界面剪切强度和层间剪切强度均达到了最大值,分别为80.2和90.3 MPa,其弯曲强度和弯曲模量也达到了最大值,分别为902.6 MPa和79.3 GPa,且应力-应变最高点增大,弯曲性能提高;在800℃下浓HNO3浸渍处理120 min的复合材料的残炭率最大为58.2%,热稳定性最佳。  相似文献   

6.
碳纤维三维编织复合材料的结构对拉伸和弯曲性能的影响   总被引:9,自引:0,他引:9  
研究了碳纤维四步法三维四向、三维五向编织结构复合材料的拉伸和弯曲性能,以及结构参数-编织角的变化对其拉伸和弯曲性能的影响,并与层合复合材料作了对比性研究.结果表明,三维编织复合材料具有良好的力学性能,其拉伸强度可达810MPa、拉伸模量可达95.6GPa,弯曲强度可达829.03MPa、弯曲模量可达67.5GPa.同时,编织角和编织结构对复合材料性能有较大的影响.随着编织角的增大,复合材料的拉伸、弯曲强度和模量均减小;三维五向结构的拉伸、弯曲强度和模量均高于四向结构;在纤维体积含量相近的情况下,通过对编织角的设计,可以设计三维编织复合材料的性能.  相似文献   

7.
对HKT800碳纤维表面形貌、元素、官能团等进行了表征分析;对AG80环氧树脂配方体系进行了优化;然后对HKT800碳纤维/AG80环氧树脂复合材料的力学性能及界面情况进行了测试分析。结果表明,HKT800碳纤维具有比较高的表面活性,表面元素的O/C、N/C比例分别达到了25.2%,4.5%,活性与非活性碳原子之比达到0.91;质量比为100∶30∶3时,AG80/DDS/BF3·MEA树脂体系能够在150℃的工艺条件下固化;HKT800碳纤维/AG80环氧树脂复合材料0°拉伸、弯曲和压缩强度分别达到2 682,1 874和1 639 MPa,层间剪切强度为110 MPa。  相似文献   

8.
碳纤维/有机硅改性环氧树脂复合材料性能研究   总被引:4,自引:2,他引:4  
介绍了一种碳纤维/有机硅改性环氧树脂复合材料的性能研究情况.对该复合材料的力学性能、热常数和烧蚀性能进行了初步测试.结果表明,其拉伸强度达到558MPa,拉伸模量达到44.0GPa,层间剪切强度为16.6MPa,导热系数不超过0.3 W/(m*K),氧-乙炔烧蚀的线烧蚀率为0.049mm/s,质量烧蚀率为0.0595g/s.通过与常用的碳/酚醛材料比较,碳纤维/有机硅改性环氧树脂复合材料的性能较优.  相似文献   

9.
自行开发了一种高刚度环氧树脂(5182树脂),研究了5182树脂的增刚机制、耐热性能和力学性能。结果表明,原位生成的酰亚胺刚性链段及增加的多交联位点提高了5182树脂交联网络的刚性,其玻璃化转变温度达228℃,拉伸模量达到4 375 MPa。采用高刚度5182树脂制备了国产BHM3和东丽M40J高模碳纤维增强高刚度环氧树脂复合材料,考察了高模碳纤维/高刚度环氧树脂单丝复合材料的界面黏结性能和断面微观形貌,并评价了高模碳纤维/高刚度环氧树脂单向复合材料的宏观力学性能。结果表明,由于树脂模量的提高及界面破坏区域由碳纤维表面转移到环氧树脂区,高模碳纤维/高刚度环氧树脂复合材料的界面剪切强度最高达106.8 MPa,宏观力学性能优异,尤其弯曲性能和层间剪切强度大幅提高。   相似文献   

10.
为制备兼具力学性能和电磁吸收性能的结构型吸波材料,采用真空辅助成型工艺设计制备一种以羰基铁粉(CIP)为吸收剂,玻璃纤维(GF)为透波层,碳纤维(CF)为反射层,环氧树脂(EP)为基体的吸波复合材料。研究了不同质量比CIP/EP对吸波复合材料力学性能和微波吸收性能的影响。通过FTIR和DSC分析可知CIP未与EP发生化学反应。SEM结果表明CIP能够在EP树脂基体中均匀分散,不趋向于纤维表面。力学测试分析结果显示:当CIP/EP质量比达到30%时,CIP/GF/CF/EP复合材料的力学性能最佳,拉伸强度为347.56MPa,拉伸模量为25.99GPa,较纯GF/CF/EP复合材料提升了4.3%和5.7%;弯曲强度为339.6MPa,弯曲模量为23.7GPa,较纯GF/CF/EP复合材料提升了18.2%和71.2%。矢量网络分析可知复合吸波板的吸波性能随CIP含量的增加而增加,且吸波损耗反射峰值朝低频段移动。  相似文献   

11.
用硅烷偶联剂对磨碎玻璃纤维表面进行改性,并制备玻璃纤维/环氧树脂复合材料,采用超声分散对复合材料分散处理,探讨不同磨碎玻璃纤维粉质量比对环氧树脂基复合材料压缩、拉伸性能的影响。研究表明,添加磨碎玻璃纤维后,环氧树脂的强度和硬度显著增强。当磨碎玻璃纤维掺量在15%~25%之间时,复合材料的综合力学性能最好,其压缩强度、压缩模量、拉伸强度最高达到67.1 MPa、1.68 GPa、57.6 MPa,与纯环氧树脂相比提高了24%、35%、34%;断裂伸长率随着掺量的增加逐渐降低,当含量达到30%时比纯环氧树脂的降低了48%,表明添加玻璃纤维粉后环氧树脂脆性增强。目数小粒径较大的玻璃纤维粉对环氧树脂力学性能增强效果更优,但影响程度不如含量对复合材料力学性能的影响大。  相似文献   

12.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了连续玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。考察了聚合反应中催化剂用量对PCBT结晶度以及GF/PCBT复合材料力学性能的影响。当催化剂用量为0.5%(质量分数)时, PCBT的结晶度为53%, GF/PCBT的力学性能达到最佳, 拉伸强度为522 MPa, 拉伸模量为27 GPa, 弯曲强度为481 MPa, 弯曲模量为24.8 GPa, 层间剪切强度(ILSS)为43 MPa。SEM观察表明, 发现催化剂用量为0.5%时, 树脂与纤维的结合性较好。进一步研究了淬火和退火后处理对复合材料力学性能的影响。发现复合材料退火处理后具有较好的力学性能, 其中拉伸强度为545 MPa, 弯曲强度为495 MPa。  相似文献   

13.
采用正压过滤法制备了多壁碳纳米管(MWCNTs)网格(巴基纸),并采用真空辅助RTM工艺制备了MWCNTs网格/环氧树脂复合材料。通过SEM、FTIR、拉伸测试等对MWCNTs网格的微观形貌和性能进行了表征,并研究了MWCNTs网格/环氧复合材料的拉伸性。结果表明,所制备的功能化MWCNTs网格比较均匀,拉伸强度在22~32 MPa之间,拉伸模量约为1 GPa,相比未功能化处理的MWCNTs网格,强度最大提高了约167%。功能化MWCNTs网格/环氧树脂复合材料的拉伸强度和拉伸模量可达到152 MPa和6.48 GPa,相比空白环氧树脂提高了约1倍以上,拉伸试样断面SEM表明,环氧树脂对功能化MWCNTs网格的浸润效果良好,界面结合紧密,有效地提高了复合材料的力学性能。  相似文献   

14.
以单向连续竹青纤维(OBF)和不饱和聚酯树脂(UP)制备了单向OBF/UP复合材料,研究了OBF含量对OBF/UP复合材料纵向静态力学性能及动态力学性能的影响,并采用SEM观察了复合材料拉伸断面处界面结合情况。结果表明:随着OBF含量的增加,OBF/UP复合材料静态力学性能呈先增加后减小趋势,当OBF含量为50wt%时,复合材料拉伸、弯曲性能最优,拉伸强度、拉伸模量、弯曲强度、弯曲模量分别达到285.52 MPa、16.06 GPa、359.80 MPa、27.32 GPa;OBF/UP复合材料存储模量随OBF含量增加呈先增加后减小趋势,当OBF含量为50wt%时,OBF/UP复合材料存储模量最大,且随着OBF含量的增加,OBF/UP复合材料玻璃化转变温度向低温方向移动,损耗峰变宽;断面处微观形貌表明,OBF含量为50wt%时,复合材料界面结合强度较好。制备的OBF/UP复合材料力学性能优良,有潜力取代玻璃纤维增强树脂复合材料在风电叶片材料、公路防护栏材料、船舶材料等领域的应用。   相似文献   

15.
为探究热塑性酚酞基聚醚酮(Polyaryletherketone with Cardo,PEK-C)树脂薄膜及膜厚对层间增韧碳纤维/环氧树脂复合材料力学性能的影响,利用浸渍提拉法制备了三种不同厚度(分别约为1 μm、10 μm、30 μm)的PEK-C膜,通过热压成型制备了层间增韧碳纤维/环氧树脂复合材料层合板,对其进行了Ⅰ型层间断裂韧性、冲击后压缩强度、层间剪切及弯曲性能测试,并利用SEM观察微观形貌及AFM扫描微观相图。结果表明:不同PEK-C膜厚增韧碳纤维/环氧树脂复合材料的Ⅰ型层间断裂韧性、冲击后压缩强度及层间剪切强度有不同程度提高,Ⅰ型层间断裂韧性及层间剪切强度以膜厚为10 μm最佳,分别增大了157.17%和17.57%,冲击后压缩强度以膜厚为30 μm最佳,达到了186.67 MPa,这是由于PEK-C与环氧树脂在热压固化过程中形成了双相结构,改善了材料韧性;但弯曲性能持续下降,强度及模量由未增韧的1 551 MPa、106 GPa分别降至30 μm时的965 MPa、79 GPa,这是由于PEK-C树脂扩散进入环氧树脂中,降低了纤维体积分数及材料刚度。   相似文献   

16.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

17.
RTM改性苯并噁嗪树脂及复合材料性能研究   总被引:1,自引:0,他引:1  
研究了RTM改性苯并噁嗪树脂及复合材料性能.用DMA研究RTM改性苯并噁嗪树脂体系的储能模量、损耗模量和玻璃化转变温度;用流变仪研究黏度特性;用TGA和TGA微分曲线研究热分解性能;并研究了RTM改性苯并噁嗪树脂及复合材料的力学性能.结果表明:RTM改性苯并噁嗪树脂体系的玻璃化转变温度是206℃;至少有400min的低黏度(η≤0.5Pa.s)时间作为工艺开放期;在氮气气氛下,RTM苯并噁嗪树脂体系热失重分两个主要阶段,在375℃时发生5%热失重,800℃残碳率是45.2%;RTM苯并噁嗪树脂基体拉伸强度72.4MPa,拉伸模量5.07GPa,弯曲强度173MPa,弯曲模量4.6GPa;碳纤维增强RTM苯并噁嗪树脂基复合材料的常规力学性能优异.  相似文献   

18.
采用不同混杂比的碳纤维-玻璃纤维层内经向混编单轴向织物制备了混杂纤维增强环氧树脂复合材料, 研究了不同混杂结构和不同混杂比的碳纤维-玻璃纤维/环氧树脂复合材料拉伸性能的变化及破坏形式。0°拉伸结果表明:同种混杂织物的不同混杂结构中, 碳纤维相对集中的完全对齐结构强度最高, 不同混杂比织物的完全对齐结构强度相当;碳纤维-玻璃纤维/环氧树脂复合材料的模量遵循混合定律。90°拉伸结果表明:纤维与树脂间的界面结合强度为碳纤维/树脂>玻璃纤维/树脂, 碳纤维-玻璃纤维/环氧树脂复合材料的强度、模量与材料厚度方向上界面的不同形式(单一或交替界面、碳纤维或玻璃纤维的分布位置等)有关, 与碳纤维的含量基本无关。   相似文献   

19.
碳纳米管/碳纤维/环氧树脂复合材料研究   总被引:1,自引:0,他引:1  
制备了碳纳米管(CNTs)/碳纤维(CF)/环氧树脂(EP)三元复合材料。研究了CNTs含量对复合材料层间剪切强度、弯曲强度和弯曲模量的影响,并采用场发射扫描电镜分析了CNTs在基体树脂中的分散情况。结果表明:复合材料性能的变化源自于CNTs在基体树脂中的分散状态。当CNTs含量为0.2%(wt,下同)时,复合材料剪切强度和弯曲强度达到最大值,分别为99.2MPa和1811.4MPa,但其弯曲模量下降了8.7GPa。当CNTs添加量达到1%时,其弯曲模量达到135.9GPa,较未加入CNTs时提高了11.1%,层间剪切强度和弯曲强度分别降低了5.5MPa和359.5MPa。  相似文献   

20.
CF/PPEK、CF/PPES复合材料高温力学性能研究   总被引:1,自引:0,他引:1  
采用预浸热压成型工艺制备碳纤维增强杂萘联苯聚醚酮(CF/PPEK)和碳纤维增强杂萘联苯聚醚砜(CF/PPES)单向复合材料试样,通过对试样在常温和高温条件下的力学性能测试与分析,研究了高性能热塑性复合材料在高温条件下力学性能及其强度和模量保留率的变化规律.实验表明,在250℃下其拉伸和弯曲强度及模量的保留率均在60%以上,仍具有极高的承载能力.利用Tr-n预测模型对这两种复合材料高温力学性能进行的预测结果与试验值基本吻合,从而验证了这个模型的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号