首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A series of sol‐gel derived organic–inorganic hybrid materials consisting of organic poly(methyl methacrylate) (PMMA) and inorganic titania (TiO2) were successfully synthesized by using 2‐hydroxyethyl methacrylate (HEMA) as coupling agent. In this work, HEMA is first copolymerized with methyl methacrylate monomer at specific feeding ratios by using benzoyl peroxide (BPO) as initiator. Subsequently, the as‐prepared copolymer (i.e., sol‐gel precursor) is then cohydrolyzed with various contents of titanium butoxide to afford chemical bondings to the forming titania networks to give a series of hybrid materials. Transparent organic–inorganic hybrid materials with different contents of titania are always achieved. Effects of the material composition on the thermal stability, optical properties, and morphology of neat copolymer and a series of hybrid materials, in the form of both coating and free‐standing film, are also studied by differential scanning calorimetry, thermogravimetric analysis, UV–Vis transmission spectra, refractometer, and atomic force microscopy, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 400–405, 2004  相似文献   

2.
A series of sol–gel‐derived organic–inorganic hybrid materials that comprise organic poly(methyl methacrylate) (PMMA) and inorganic silica (SiO2) was successfully prepared using aniline as an organic base catalyst to catalyze the sol–gel reactions of tetraethylorthosilicate (TEOS). Aniline was adopted not only as a catalyst but also as a dispersing agent during the preparation of the hybrid materials. The as‐prepared hybrid materials were then characterized using transmission electron microscopy, SEM/energy dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy. The characteristic temperatures (including Td and Tg) of the hybrid materials slightly exceeded those of neat PMMA, as revealed from thermogravimetric analysis and differential scanning calorimetry evaluations. Studies of the protection against corrosion demonstrated that the hybrid coatings all improved the protection performance on cold‐rolled steel coupons relative to that of neat PMMA coatings, according to measurements of electrochemical corrosion parameters. Additionally, incorporating silica particles into the polymer may effectively reduce the gas permeability of the polymer membrane. Reducing the size of silica particles (at the same silica feeding) further improved the gas barrier property. Optical clarity studies indicated that introducing silica particles into the PMMA matrix may slightly reduce the optical clarity of the films/membranes, as determined by UV‐visible transmission spectroscopy. The contact angle of H2O of the hybrid films increased with the amount of aniline. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

3.
In this study, a series of organic–inorganic hybrid sol–gel materials consisting of a poly(methyl methacrylate) (PMMA) matrix and dispersed silica (SiO2) particles were successfully prepared through an organic‐acid‐catalyzed sol–gel route with N‐methyl‐2‐pyrrolidone as the mixing solvent. The as‐synthesized PMMA–SiO2 nanocomposites were subsequently characterized with Fourier transform infrared spectroscopy and transmission electron microscopy. The solid phase of organic camphor sulfonic acid was employed to catalyze the hydrolysis and condensation (i.e., sol–gel reactions) of tetraethyl orthosilicate in the PMMA matrix. The formation of the hybrid membranes was beneficial for the physical properties at low SiO2 loadings, especially for enhanced mechanical strength and gas barrier properties, in comparison with the neat PMMA. The effects of material composition on the thermal stability, thermal conductivity, mechanical strength, molecular permeability, optical clarity, and surface morphology of the as‐prepared hybrid PMMA–SiO2 nanocomposites in the form of membranes were investigated with thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, gas permeability analysis, ultraviolet–visible transmission spectroscopy, and atomic force microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The sol–gel reaction of a polycarbonate (PC) oligomer having triethoxysilyl groups at both ends of the PC chain (PCS) with a tetraethoxysilane or tetramethoxysilane oligomer provided transparent or semitransparent films of higher silica containing organic–inorganic hybrid materials (HSPC‐HMs). The films were superior to those from PC and from PCS in terms of the morphological homogeneity, heat resistance, and surface hardness. The HSPC‐HM films had minimum oxygen permeability at a PCS/tetraethoxysilane ratio of 3/7. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4273–4279, 2006  相似文献   

5.
A series of sol–gel derived organic–inorganic hybrid coatings consisting of organic poly (vinyl carbazole) (PVK) and inorganic silica (SiO2), with 3‐(trimethoxysilyl)propyl methacrylate (MSMA) as coupling agent, were successfully synthesized. First of all, vinyl carbazole (VCz) monomers are copolymerized with MSMA by performing free‐radical polymerization reactions with AIBN as initiator. Subsequently, as‐prepared copolymer (i.e., sol–gel precursor) was further reacted with various feeding content of tetraethyl orthosilicate (TEOS) through organic acid (CSA)‐catalyzed sol–gel reaction to form a series of PVK‐silica hybrid (PSH) sol–gel materials. The as‐synthesized hybrid materials were subsequently characterized by Fourier‐Transformation infrared (FTIR) spectroscopy and solid‐state 29Si NMR. It should be noted that the PVK‐SiO2 hybrid (PSH) coating on cold‐rolled steel (CRS) electrode with low silica loading (e.g., 10 phr) was found to be superior in anticorrosion property over those of neat PVK based on a series of electrochemical measurements such as corrosion potential, polarization resistance, corrosion current, and electrochemical impedance spectroscopy in 3.5 wt% NaCl electrolyte. The better anticorrosion performance of PSH coatings as compared to that of neat polymer may probably be attributed to the stronger adhesion strength of PSH coatings on CRS electrode, which was further evidenced by Scotch tape test evaluation. Increase of adhesion strength of PSH coatings on CRS electrode may be associated with the formation of Fe–O–Si covalent bonds at the interface of PSH coating and CRS electrode based on the FTIR–RAS (reflection absorption spectroscopy) studies. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
In this study, two classes of low‐loss optical planar waveguides were prepared from trialkoxysilane‐capped poly(methyl methacrylate) (PMMA)–silica and PMMA–titania hybrid materials, respectively. The prepared hybrid films had very uniform structure and surface planarity. The incorporation of the silica or titania segments into the acrylic polymer matrix reduced the intermolecular interaction and thus induced an increase in anharmonicity of the C‐H bond in the acrylic segment. Therefore, the third harmonic stretching vibration absorption of the C‐H bond was red‐shifted and resulted in a tuning of near‐infrared (NIR) optical absorption. The optical loss of the studied waveguides was reduced from 0.65 dB/cm of the PMMA waveguide to 0.26 and 0.28 dB/cm with increasing the silica and titania content in the hybrid materials, respectively. The reduction of the C‐H number density and shifting of the NIR absorption spectra accounted for the relationship between the optical loss and the inorganic oxide content. The increased anharmonicity through the incorporation of the inorganic moiety in the hybrid materials provides another approach for tuning the NIR optical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1224–1228, 2005  相似文献   

7.
A series of sol‐gel derived organic–inorganic hybrid coatings consisting of organic epoxy resin and inorganic silica were successfully synthesized through sol‐gel approach by using 3‐glycidoxypropyl‐trimethoxysilane as coupling agent. Transparent organic–inorganic hybrid sol‐gel coatings with different contents of silica were always achieved. The hybrid sol‐gel coatings with low silica loading on cold‐rolled steel coupons were found much superior improvement in anticorrosion efficiently. The as‐synthesized hybrid sol‐gel materials were characterized by Fourier‐transformation infrared spectroscopy, 29Si‐nuclear magnetic resonance spectroscopy and transmission electron microscopy. Effects of the material composition of epoxy resins along with hybrid materials on the thermal stability, Viscoelasticity properties and surface morphology were also studied, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Colloidal silica nanoparticles synthesized from tetraethoxysilane via a sol–gel process were surface-modified first by 3-(trimethoxysilyl)propyl methacrylate, and then by trimethylethoxysilane (TMES). The former agent acts both as a coupling agent and as a C=C provider, whereas the latter agent is used to prevent particle aggregation and to increase hydrophobicity of the coating. The modified silica particles were UV-cured together with the monomer, 2-hydroxyethyl methacrylate (2-HEMA), and the crosslinking agent, dipentaerythritol hexaacrylate (DPHA), to form highly transparent hard coatings on plastic (PMMA and PET) substrates. Both differential scanning calorimetric and thermal gravimetric analyses of the hybrid materials indicated enhanced thermal stability with respect to the neat HEMA–DPHA copolymer. Furthermore, due to the incorporation of TMES, hydrophobicity of the hybrid coating increased considerably with increasing modified silica content. In the extreme case, an antiabrasive hard coating (7H on PMMA) with a water contact angle of 99° was obtained at the silica content of 15 wt%.  相似文献   

9.
In this work we report the synthesis process and properties of PMMA‐ZrO2 organic–inorganic hybrid films. The hybrid films were deposited by a modified sol‐gel process using zirconium propoxide (ZP) as the inorganic (zirconia) source, methyl methacrylate (MMA) as the organic source, and 3‐trimetoxy‐silyl‐propyl‐methacrylate (TMSPM) as the coupling agent between organic and inorganic phases. The films were deposited by dip coating on glass slide substrates from a hybrid precursor solution containing the three precursors with molar ratio 1 : 0.25 : 0.25 for ZP, TMSPM, and MMA, respectively. After deposition, the hybrid thin films were heat‐treated at 100°C for 24 h. The macroscopic characteristics of the hybrid films such as high homogeneity and high optical transparence evidenced the formation of a cross‐linked, interpenetrated organic–inorganic network. The deposited PMMA‐ZrO2 hybrid films were homogeneous, highly transparent and very well adhered to substrates. Fourier Transform Infra‐Red measurements of the hybrid films display absorption bands of chemical groups associated with both PMMA and ZrO2 phases. The amounts of organic and inorganic phases in the hybrid films were determined from thermogravimetric measurements. The surface morphology and homogeneity of the hybrid films at microscopic level were analyzed by scanning electron microscopy and atomic force microscopy images. From the analysis of optical transmission and reflection spectra, the optical constants (refraction index and extinction coefficient) of the hybrid films were determined, employing a physical model to simulate the hybrid optical layers. The refraction index of the hybrid films at 532 nm was 1.56. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42738.  相似文献   

10.
The polystyrene–silica hybrid materials have been successfully prepared from styrene and tetraethoxysilane in the presence of silane‐coupling agents by an in situ sol‐gel process. Triethoxysilyl group can be incorporated into polystyrene as side chains by the free‐radical copolymerization of polystyrene with silane‐coupling agents, and simultaneously polystyrene–silica hybrid materials with covalent bonds between two phases were formed via the sol‐gel reaction. The 3‐(trimethoxysilyl)‐propyl‐methacrylate (MPS) systems were found to be more homogeneous than the corresponding allytrimethoxysilane hybrid system of equal molar content. In the MPS‐introduced system, the thermal properties of the materials were greatly affected by the presence of MPS. FTIR results indicate successful formation of the silica networks and covalent bonding formation of coupling agents with styrene. The homogeneity of polystyrene–silica systems was examined by scanning electron microscope and atomic force microscope. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2074–2083, 2002  相似文献   

11.
This article describes the development of a new crosslinked poly(methyl methacrylate‐2‐hydroxyethyl methacrylate) copolymeric core–shell hydrogel microsphere incorporated with ibuprofen for potential applications in bone implants. Initially poly(methyl methacrylate) (PMMA) core microspheres were prepared by free‐radical initiation technique. On these core microspheres, 2‐hydroxyethyl methacrylate (HEMA) was polymerized by swelling PMMA microspheres with the HEMA monomer by using ascorbic acid and ammonium persulfate. Crosslinking monomers such as ethylene glycol dimethacrylate (EGDMA) has also been included along with HEMA for polymerization. By this technique, it was possible to obtain core–shell‐type microspheres. The core is a hard PMMA microsphere having a hydrophilic poly(HEMA) shell coat on it. These microspheres are highly hydrophilic as compared to PMMA microspheres. The size of the hydrogel microspheres almost doubled when swollen in benzyl alcohol. These microspheres were characterized by various techniques such as optical microscopy, scanning electron microscopy, Fourier‐transformed infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The particle size of both microspheres was analyzed by using Malvern Master Sizer/E particle size analyzer. The in vitro release of ibuprofen from both microspheres showed near zero‐order patterns. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3045–3054, 2002; DOI 10.1002/app.10310  相似文献   

12.
On the basis of sol–gel methodology, a novel degradable hybrid electrolyte, poly(lactic acid) (PLA)/poly(methyl methacrylate) (PMMA)/silicon dioxide (SiO2) hybrid electrolyte, was prepared from PLA, methyl methacrylate, and tetraethoxylsilicon with 3‐methacryloxypropyl trimethoxysilane as a coupling agent. As observed from Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy spectra, the PLA, PMMA, and silica units were linked by covalent bonds through the coupling agent in a hybrid network. Differential scanning calorimetry results show that the heat‐resistance properties of the hybrid electrolyte improved with increasing SiO2 content. The hybrid electrolyte was shown to be amorphous by the X‐ray diffraction results. From study of ionic conductivity by alternating‐current impedance, the ionic conductivity of the PLA/PMMA/SiO2 hybrid electrolyte increased with increasing silica content, reached a maximum value of 2.42 × 10?4 S/cm at 2 wt % SiO2, and then decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The high/low refractive index organic/inorganic antireflective (AR) hybrid polymers were formed using the sol–gel process, in which TiO2/2‐hydroxyethyl methacrylate (2‐HEMA) (high refractive index hybrid polymer) and SiO2/2‐HEMA (low refractive index hybrid polymer) two‐layer thin films were formed on a hard coating deposited poly(methyl methacrylate) (HC‐PMMA) substrate by both spin coating and dip coating. The relationship between the process parameters and the optical properties, thickness, porosity, surface morphology, and adhesion was determined. The results show that the reflectance of the two‐layer thin films on HC‐PMMA substrate is less than 0.21% (λ = 550 nm), with good adhesion (5B) and a hardness of up to 4H. In addition, the thickness, porosity, and roughness of the films affect refractive index and the antireflection properties of the AR two‐layered thin film. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The transparent poly(butyl acrylate‐co‐maleic anhydride)/silica [P(BA‐co‐MAn)/SiO2] has been successfully prepared from butyl acrylate‐maleic anhydride copolymer P(BA‐co‐MAn) and tetraethoxysilane (TEOS) in the presence of 3‐aminopropyltriethoxysilane (APTES) by an in situ sol–gel process. Triethoxysilyl group can be readily incorporated into P(BA‐co‐MAn) as pendant side chains by the aminolysis of maleic anhydride unit of copolymer with APTES, and then organic polymer/silica hybrid materials with covalent bonds between two phases can be formed via the hydrolytic polycondensation of triethoxysilyl group‐functionalized polymer with TEOS. It was found that the amount of APTES could dramatically affect the gel time of sol–gel system, the sol fraction of resultant hybrid materials, and the thermal properties of hybrid materials obtained. The decomposition temperature of hybrid materials and the final residual weight of thermogravimetry of hybrid both increase with the increasing of APTES. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the morphology of hybrid materials prepared in the presence of APTES was a co‐continual phase structure. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 419–424, 1999  相似文献   

15.
Interpenetrating networks (IPNs) of polybutadiene‐based polyurethane (PU) and poly(methyl methacrylate) (PMMA) were synthesized. The effect of the incorporation of 2% glycidyl methacrylate (GMA) and 2‐hydroxyethyl methacrylate (2‐HEMA) on the thermal, mechanical, and morphological properties of IPNs was investigated. Both 2‐HEMA and GMA led to improvements in these properties. However, 2‐HEMA‐containing IPNs showed somewhat better tensile strength, elongation, and damping characteristics. The morphology of IPNs containing 2‐HEMA showed better mixing of the components. The improvement in the properties was observed for up to 40% PMMA in the IPNs. Differential scanning calorimetry thermograms showed the presence of three glass transitions. The third glass‐transition temperature was explained by possible grafting of methyl methacrylate onto PU. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1576–1585, 2002  相似文献   

16.
A series of new polymethacrylate–silica chemical hybrid dental fillers has been prepared by the sol–gel reactions of poly[methyl methacrylate-co-3-(trimethoxysilyl) propyl methacrylate] or poly[3-(trimethoxysilyl)propyl methacrylate] with tetraethyl orthosilicate at various compositions. In these hybrid fillers, the polymethacrylate chains are uniformly distributed in and covalently bonded to the silica networks at molecular level without macroscopic organic–inorganic phase separation. The contact angle and surface tension parameters indicate that the hybrid fillers have better wetting properties with the 2,2-bis(p-2-hydroxy-3-methacryloxypropoxyphenyl)propane/triethyleneglycol dimethacrylate resin and stronger interfacial bonding with the polymer matrix than pure silica fillers. The compressive testing results demonstrate that the dental composites prepared with the hybrid fillers tend to have enhanced mechanical properties in comparison to those with the silane-treated fused silica and the pure sol-gel silica fillers at the same silica content. Scanning electron micrographic study reveals that upon compressive tests the dental composites with the hybrid fillers have fewer failures at the filler–matrix interface than those with pure silica fillers. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1689–1699, 1998  相似文献   

17.
We focused on the synthesis and optical properties of new organic–inorganic hybrid materials containing azobenzene groups for rewritable optical recording media. Hybrid material (SGUR19‐n's) design has the structure of azobenzene group with urethane bonds in the silica network. The structures of the synthesized monomers and precursors were confirmed by FTIR and 1H NMR spectrophotometer. Also, we reported on the effects of the direction of the polarized beam, the intensity of the induced beam, and the structures of SGUR19‐n's materials on the diffraction efficiency of SGUR19‐n's films. It was revealed that SGUR19‐n's films prepared by the sol–gel process have adequate writing–erasing–rewriting properties when used as a reversible optical storage material. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4811–4818, 2006  相似文献   

18.
The main purpose of this study is to synthesize the front panel of monitor with a high refractive index optical film. Our experiment uses titanium dioxide nanoparticles mixed with methyl methacrylate (MMA), 2‐hydroxyethyl methacrylate (2‐HEMA), and tri(ethylene glycol) dimethacrylate (TEGDMA) of the wet type and economical sol–gel production process. Our product has a superior mechanical, thermal, and optical properties was demonstrated by Fourier transform infrared spectrum (FTIR), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), UV/visible spectrum, and Spectro Ellipsometer. In addition, we found the surface of the two series of thin film with the organic and inorganic high refractive index (TiO2) mixed materials, has high transmittance for visible light above 90%, refractive index <1.65 and the hardness test 6H. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2271–2280, 2007  相似文献   

19.
Poly(methyl methacrylate) (PMMA)–clay nanocomposite (PCN) materials were synthesized through in situ intercalative polymerization. A cationic surfactant, [2(dimethylamino)ethyl]triphenylphosphonium bromide, was used as an intercalating agent with pristine Na+‐montmorillonite (MMT). The synthesized PCN materials were subsequently investigated by a series of characterization techniques, including wide‐angle powder X‐ray diffraction, Fourier transform IR spectroscopy, transmission electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Compared to pure PMMA, the PCN materials exhibit higher thermal degradation temperatures and glass‐transition temperatures. The dielectric properties of PCN blending with a commercial PMMA material in film form with clay loading from 0.5 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 35–100°C. Significantly depressed dielectric constants and losses were observed for these PCN‐blending materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2175–2181, 2005  相似文献   

20.
Polymethyl methacrylate (PMMA) was introduced onto the surface of silica nanoparticles by particle pretreatment using silane coupling agent (γ‐methacryloxypropyl trimethoxy silane, KH570) followed by solution polymerization. The modified silica nanoparticles were characterized by Fourier‐transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Sedimentation tests and lipophilic degree (LD) measurements were also performed to observe the compatibility between the modified silica nanoparticles and organic solvents. Thereafter, the PMMA slices reinforced by silica‐nanoparticle were prepared by in situ bulk polymerization using modified silica nanoparticles accompanied with an initiator. The resultant polymers were characterized by UV–vis, Sclerometer, differential scanning calorimetry (DSC). The mechanical properties of the hybrid materials were measured. The results showed that the glass transition temperature, surface hardness, flexural strength as well as impact strength of the silica‐nanoparticle reinforced PMMA slices were improved. Moreover, the tensile properties of PMMA films doped with silica nanoparticles via solution blending were enhanced. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号