首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
环交联聚磷腈是一类以六氯环三磷腈为交联单元合成的有机-无机杂化高分子材料。此类聚合物通常由六氯环三磷腈与带有双官能团或者多官能团的共聚单体经共沉淀聚合制备,兼具机高分子与无机高分子的性能。相比于线型聚磷腈,环交联聚磷腈合成条件简单温和、产率高,具有独特的大网络交联结构,并拥有优异的分子可设计性、结构与性能可调控性、尺度与形态可调节性、热稳定性及耐溶剂性等特点,在树脂基复合材料的微纳增强、阻燃、界面调控等方面得到广泛应用。介绍了环交联聚磷腈的合成方法、结构与特性,重点概述了环交联聚磷腈在纳米增强树脂基复合材料、阻燃树脂基复合材料及纤维增强树脂基复合材料中的应用,并对环交联聚磷腈在复合材料领域的发展趋势做了进一步展望。  相似文献   

2.
以六氯环三磷腈为原料,加热开环聚合制备了聚二氯磷腈,再分别以苯胺五聚体为功能单元、甘氨酸乙酯和赖氨酸为调节基团,通过两步亲核取代反应,合成了两种可用于神经支架工程材料的可降解电活性高分子聚[(甘氨酸乙酯/苯胺五聚体)磷腈](PGAP)和聚[(赖氨酸/苯胺五聚体)磷腈](PLAP)。通过红外、热重、核磁、循环伏安、紫外等对聚合物进行了全面的表征。在此基础上,重点研究了氨基酸类侧链取代基对聚磷腈降解行为的影响。研究结果表明,侧链氨基酸类取代基的类型和比例对此高分子材料的降解行为有着关键性影响。其降解速率随着取代基比例的增加而加快,此外,随着氨基酸侧链基团极性的增加,降解速率增加。  相似文献   

3.
构建具有特殊微观几何形状的粗糙结构及对其表面进行低表面能物质的修饰一直是疏水领域的研究重点。利用简单有效的方法构筑粗糙结构,从而获得性能优异持久的疏水性材料。聚膦腈主链具有极好的柔顺性和良好的分子可设计性,是制备疏水表面较好的材料之一。本研究采用苯侧基含氟双酚单体与六氯环三磷腈进行沉淀聚合反应,制备具有尺寸可控的新型含氟环交联型聚磷腈微纳球,并深入研究聚磷腈微纳球的疏水性能。  相似文献   

4.
通过一系列优化的合成取代工艺,成功制得几种不同官能侧基取代的聚有机膦腈弹性体均聚物及多种共聚物。研究了其热稳定性和阻燃成炭性能,探讨了侧基分子结构对聚膦腈的热性能和阻燃性能的影响关系。研究结果表明:侧基的类型直接影响膦腈聚合物的热稳定性和阻燃能力及方式。其中乙氧基的P—O—C键相对不稳定,从而导致分解温度低,约300℃;而氟代烷氧基和芳氧基的侧基热稳定性则相对较高,最大分解温度都高于400℃;此外,氟代烷氧基的聚膦腈具有较高的氧指数(LOI,最高可达54.5)和阻燃性(UL94,V-0),但芳氧基聚膦腈的成炭性能更为优异,炭层致密坚硬。  相似文献   

5.
采用两步法合成了一种具有磷腈和磷杂菲(DOPO)双效官能团的阻燃助剂六-(DOPO-羟甲基苯氧基)-环三磷腈(HAP-DOPO)。以六氯环三磷腈和对羟基苯甲醛为原料,通过亲核取代反应获得六-(4-醛基苯氧基)环三磷腈(HAP),进一步与9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)加成反应制得HAP-DOPO。采用红外光谱和核磁1HNMR证实了其结构。通过DSC和TGA测试,结果表明HAP-DOPO有明显的玻璃化转变温度(Tg=82℃),熔点(Tm)186℃,初始分解温度在200℃以上,在氮气氛围下600℃的残炭量达到了46.7%,成炭阻燃性能优良。  相似文献   

6.
环交联型聚磷腈是一类以六氯环三磷腈(HCCP)为主链合成的有机-无机杂化高分子材料。相比于人们所熟知的线型聚磷腈而言,环交联型聚磷腈更易合成,且具有与线型结构相似的生物相容性和生物降解性,同时因其自身的稳定性和耐热性以及小尺寸等特点,在阻燃材料、军工特种材料、填充材料、医药载药、吸附材料等领域有很高的研究价值和应用价值。环交联聚磷腈以其形貌可控、功能性可调在复合材料领域有着广泛的应用前景。文中综述了近年来环交联聚磷腈材料的分子特性以及基本性能,并介绍了其形貌调控的过程和各种复合材料,分析了环交联聚磷腈材料在功能性碳材料、荧光材料、吸附材料等方面的应用前景和发展趋势。  相似文献   

7.
通过对六氯环三磷腈的苯胺氨基化,合成出了六-苯胺基-环三磷腈(HACTP)。将HACTP作为阻燃剂加入聚乙烯醇中进行共混纺丝,制得具有良好阻燃效果的聚乙烯醇纤维。通过各种表征手段研究了阻燃纤维的阻燃性能、热分解性能和力学性能。结果表明,随着HACTP含量增加,阻燃PVA纤维的极限氧指数(LOI)和残炭率随之增加,而其拉伸强度却呈下降趋势。当HACTP的质量百分数在10%~15%,PVA纤维的拉伸强度≥3.2 cN/dtex,其极限氧指数≥28%,PVA纤维同时具有良好的阻燃性能和力学性能。  相似文献   

8.
聚膦腈是一类骨架由氮、磷单双键交替排列而成,侧基由有机基团组成的无机-有机高分子。主要介绍了新型聚磷腈的合成,聚磷腈改性纳米粒子以及其在生物医学方面的应用。  相似文献   

9.
合成了一种长链磷腈衍生物六辛胺基环三磷腈(HOCP)阻燃增容剂,通过傅里叶变换红外光谱、核磁共振谱及元素分析对阻燃剂的组成及结构进行了表征。将新合成的HOCP应用于聚磷酸铵(APP)和三(1-氧代-1-磷杂-2,6,7-三氧杂双环[2.2.2]辛烷-4-亚甲基)磷酸酯(Trimer)处理的乙烯醋酸乙烯酯(EVA)材料,并通过极限氧指数(LOI)、垂直燃烧测试、力学性能测试和流变测试,研究了HOCP对EVA的阻燃增容作用。通过扫描电镜研究了阻燃EVA材料经氧指数测试后的残炭内外表面。结果表明,HOCP对EVA具有较好的阻燃增容作用,当添加10%的HOCP时,阻燃效果最好,样品6的LOI达到了29.5%,当添加15%的HOCP时,断裂伸长率达到最大,样品7的断裂伸长率达到了949%。  相似文献   

10.
聚二乙氧基磷腈的合成与表征   总被引:5,自引:1,他引:4  
聚二乙氧基磷腈是以磷、氮原子交替排列作为主链结构的无机高分子,具有良好的成膜性,是一类有潜在应用前景的新型膜分离材料。本文研究了由三聚六氯化环磷腈进行固相聚合制备聚氯化磷腈以及由后者制备聚二乙氧基磷腈的方法,同时对产物进行了表征。  相似文献   

11.
综述线型聚磷腈国内外的研究进展,总结线型聚磷腈的合成方法以及在防火阻燃材料、药物及生物医学材料和高分子膜材料方面的应用,针对聚磷腈高分子材料的前景进行了展望。  相似文献   

12.
聚磷腈有高含量的磷与氮,有的还含有卤素,高含量磷、氮构成协同体系有很好的阻燃性能,显示出优良的不燃性与良好的阻燃性能,其氧指数为27~65,可用于改性获得或合成氧指数较高并具有其优良性能的高分子材料,广泛用作防火阻燃材料和自熄性材料。聚溴代烷氧基磷腈是一种性能优良的阻燃剂,广泛地用于塑  相似文献   

13.
合成了一系列不同组成的多聚磷腈衍生物,通过TGA测试了其热稳定性.结果表明所制得的磷腈混合物热稳定性优良,初始分解温度达300℃以上,将其与PC/ABS复合,具有优异的阻燃性能,当体系中添加量为12%时,阻燃性能达到UL-94的V-0级;同时,多聚磷腈还具有改善加工性能的作用,熔融指数测试结果表明,随着混合物中多聚磷腈含量的提高,PC/ABS复合物的熔融指数逐渐变大,加工性能变好.  相似文献   

14.
为提高苯并噁嗪树脂的耐高温性能,以水杨醛、对氨基苯酚、环三磷腈衍生物为原料通过多步反应制备了环三磷腈基苯并噁嗪单体(CPBOZ),通过核磁共振(1 H-NMR、31 P-NMR)和傅里叶红外光谱(FT-IR)对所合成化合物的结构进行了表征;利用FT-IR和热重分析(TGA)考察了苯并噁嗪的固化行为及树脂的热稳定性。结果显示:环三磷腈结构的引入,显著提高了相应苯并噁嗪树脂的耐热性,其固化后失重率为5%和失重率为10%时的温度分别达到了365℃和397℃;在900℃(N2)时的失重率达到了48.2%,比普通苯并噁嗪树脂提高了约65.64%。  相似文献   

15.
制备了一种新颖的反应型阻燃剂,(4-二乙氧基磷酰基羟苯氧基)(4-羟基苯氧基)环三磷腈(EPPZ),其特征通过FTIR,^31P-N MR,^1H-NMR分析表征,实验制备的(脂肪族磷酸酯)环三磷腈含有不同的磷组分。环三磷腈聚氨酯(EPPZ-PU)由EPPZ、聚丙二醇、1,4-丁二醇、2,4-甲苯二异氰酸酯合成,其特征通过FTIR、TGA、DSC、限定氧指数(LOI)和拉伸强度来表征。结论证明,与纯的聚氨酯相比,用此方法合成的含EPPZ聚氨酯具有较高的玻璃化转变温度,较高的拉伸强度,较低的降解温度,较高的残炭率。聚氨酯在不同降解阶段的活化能用Ozawa方法计算。随EPPZ含量增加,聚氨酯LOI值增加,并且表现出明显的燃-熄行为。实验同时发现聚氨酯的阻燃作用最初发生在凝聚相。  相似文献   

16.
简要介绍了六氯环三磷腈的结构和理化性质,研究了五氯化磷与氯化铵反应生成六氯环三磷腈的反应机理,概述了六氯环三磷腈的合成方法以及本课题组的合成进展,综述了其在阻燃领域的应用进展,最后指出了六氯环三磷腈在我国工业化生产中存在的问题和解决途径。  相似文献   

17.
以六氯环三磷腈、对羟基苯甲醛及γ-氨丙基硅烷三醇(KH553)为反应原料,合成了具有席夫碱结构的有机硅型成炭剂六(γ-氨丙基硅烷三醇)环三磷腈(HKHPCP)。以HKHPCP与聚磷酸铵(APP)的复配物为抗熔滴剂,以N-烷氧基受阻胺(NOR116)为阻燃协效剂,通过熔融共混技术制备了膨胀阻燃聚丙烯(PP)基复合材料(APP-HKHPCP-NOR116/PP)。利用FTIR、核磁共振(1 H和31P NMR)对HKHPCP的化学结构进行了表征。采用热失重、极限氧指数、垂直燃烧、锥形量热、拉曼光谱和SEM研究了阻燃体系的热降解行为、阻燃性能及炭层的石墨化程度和致密性。HKHPCP的热失重结果表明,其在氧气氛围下的初始分解温度为300.2℃,1 000℃时残余率为34.8%。当添加总量为30wt%的阻燃剂时,APP-HKHPCP-NOR116/PP复合材料的极限氧指数(LOI)达到43%,且能通过UL-94V-0级,其热释放速率(HRR)、总热释放速率(THR)及烟释放速率(SPR)、总烟释放量(TSP)相比于纯PP分别降低了75.0%、50.5%和88.0%、80.8%,表现出显著的隔热、抑烟性能。APPHKHPCP-NOR116/PP复合材料燃烧后形成了高石墨化、致密的炭层。  相似文献   

18.
张文龙  赵成龙  蒋强  乔思怡  姜文影  王暄 《功能材料》2012,43(24):3386-3388,3392
合成了3种以聚磷腈为主链,接枝不同官能团的非线性化合物,分别是对硝基苯胺接枝苯酚聚磷腈、2,4-二硝基苯胺接枝苯酚聚磷腈、2,4-二硝基苯胺接枝咔唑聚磷腈,对3种化合物进行光电性能测试,含咔唑聚磷腈接枝2,4-二硝基苯胺的光电导率和电光系数是较大的。通过探索官能团结构与聚磷腈光电性能间的关系,为实验设计合成新的非线性材料提供理论支持。  相似文献   

19.
以六氯环三磷腈与1-氧基磷杂-4-羟甲基-2,6,7-三氧杂双环[2,2,2]辛烷(PEPA)为原料,合成出一种磷腈衍生物阻燃剂六(1-氧代-1-磷杂-2,6,7-三氧杂双环[2,2,2]辛烷-4-亚甲基)环三磷腈(PEPAP)。通过红外光谱和核磁共振氢谱表征了PEPAP的化学结构。熔融共混法构建PEPAP/聚丙烯(PP)阻燃体系并考察其热稳定性和阻燃性能。热重分析表明,PEPAP在N2中初始热分解温度为312℃,800℃时残炭率为34%。阻燃性能测试表明,当PEPAP质量分数为25%时体系的氧指数达29.4%,且体系能够通过UL94 V-0级。红外光谱和扫描电镜结果显示体系残炭炭层完整致密且含有磷酸酯类结构,表明PEPAP是固相阻燃机理。  相似文献   

20.
以苯硼酸和含磷硅氧烷为主要原料,设计合成了一种以Si-O-B为主链,侧链含苯环和磷杂菲基团的聚硅氧硼烷(PTDOB),在此基础上,以PTDOB为阻燃剂,碳纤维(CF)为增强材料,通过手糊结合模压成型的工艺制备了一种碳纤维/聚硅氧硼烷阻燃改性环氧复合材料(CF/PTDOB-EP)。采用极限氧指数、垂直燃烧、冲击强度和弯曲强度探究了CF/PTDOB-EP的阻燃和力学性能。结果表明,PTDOB的引入有效改善了复合材料的阻燃性能,CF/PTDOB-EP的极限氧指数提高到36.7%,并且通过了UL-94测试的V-1等级,说明PTDOB结构的磷杂菲和Si, B等元素充分发挥了阻燃作用。同时,CF/PTDOB-EP的冲击强度和弯曲强度分别达到120.5 kJ/m~2和524.3 MPa,提高了66.7%和37.4%,这是因为PTDOB结构中刚性的苯环和柔性的Si-O-B结构协同作用,赋予了CF/PTDOB-EP良好的力学性能,从而拓宽了碳纤维增强环氧复合材料的应用范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号