首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents the benefit to an operating direct methanol fuel cell (DMFC) by coating a micro-porous layer (MPL) on the surface of anode gas diffusion layer (GDL). Taking the membrane electrode assembly (MEA) with and without the anodic MPL structure into account, the performances of the two types of MEA are evaluated by measuring the polarization curves together with the specific power density at a constant current density. Regarding the cell performances, the comparisons between the average power performances of the two different MEAs at low and high current density, various methanol concentrations and air flow rates are carried out by using the electrochemical impedance spectroscopy (EIS) technique. In contrast to conventional half cell EIS measurements, both the anode and cathode impedance spectra are measured in real-time during the discharge regime of the DMFC. As comparing each anode and cathode EIS between the two different MEAs, the influences of the anodic MPL on the anode and cathode reactions are systematically discussed and analyzed. Furthermore, the results are used to infer complete and reasonable interpretations of the combined effects caused by the anodic MPL on the full cell impedance, which correspond with the practical cell performance.  相似文献   

2.
The direct methanol fuel cell (DMFC) was operated under a variety of current densities to monitor the electrochemical impedance spectroscopy (EIS) for understanding its reaction mechanism. Based on the EIS analysis, the impedance of the cell reaction is divided into three components, two of them are current dependent and the remainder is current independent. Through detailed exploration of the impedance components, the high-frequency impedance was attributed to interfacial behavior, the medium-frequency impedance to electrochemical reactions, and the low-frequency impedance to the adsorption/relaxation of CO. Based on EIS analysis, a qualitative model is proposed to delineate the reaction mechanisms of DMFC, which is confirmed quantitatively by one set of equivalent circuit elements. The experimental data are satisfactorily consistent with the results simulated from the proposed model.  相似文献   

3.
A great challenge in a passive direct methanol fuel cell (pDMFC) is how to reduce both methanol and water crossover, from the anode to the cathode side, without significant losses on its power output. Different approaches including improving the membrane and modifying the cell structure and materials have been proposed in the last years.In this work, an experimental study was carried out to evaluate the effect of the cathode diffusion layer (CDL) properties on the power output of a pDMFC. Towards a cost reduction, lower catalyst loadings were used on both anode and cathode electrodes. Since the main goal was the optimization of a pDMFC using the materials commercially available, different carbon-fibber materials were employed as CDL. The experimental results were analysed based on the polarization curves and electrochemical impedance spectroscopy measurements with innovative electric equivalent circuit allowing the identification of the different losses, including the activation resistance of the parasitic cathode methanol oxidation.A maximum power density of 3.0 mW/cm2 was obtained using carbon cloth with a lower thickness as CDL and a methanol concentration of 5 M.  相似文献   

4.
A novel anode catalyst layer (CL) has been prepared by ultrasonic‐spray process which combines directly spraying method and catalyst‐coated membrane switchover method, and heated‐stereoscopic process has been used to enhance bond force between CLs and proton exchange membrane in this paper. The scanning electron microscopy, electrochemical impedance spectra and polarization curves show that: the anode outer CL with pores and meshwork structure has increased the electrochemical active surface area and retained the transfer of protons and electrons, and the anode inner CL with compact structure has prevented methanol crossover. And the gradient catalysis for methanol electrochemical catalytic oxidation reaction has been achieved. The open circuit voltage has reached 0.697 V, and the performance has increased from 116.8 mW cm?2 of traditional membrane electrode assembly (MEA) to 202.6 mWcm?2 of novel MEA at 80°C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of the parameters of the anode gas diffusion layer (GDL), including the PTFE content in the backing layer (BL), the PTFE content in the microporous layer (MPL), and the carbon black loading on the performance of a liquid‐feed direct dimethyl ether fuel cell (DDFC), were experimentally investigated. The results indicated that increase in the PTFE content can produce more cracks across the whole surface of the MPL. These cracks were benefit to the anode two‐phase mass transport. The optimal PTFE content in anode BL and MPL was 18 and 40 wt%, respectively. The performances of the DDFCs tended to decline with the increase in the carbon black loading in the anode GDLs due to the difficult long path of mass transport. The maximum power density was obtained with 18 wt% PTFE in BL and 0 mg cm?2 carbon black loading, the optimal result, was 76.6 mW cm?2 at ambient pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Two gas diffusion layers based on the same carbon cloth substrate, produced by an Italian Company (SAATI), and coated with microporous layers of different hydrophobicities, were assembled in a polymer electrolyte membrane fuel cell and its performances assessed. For comparison the cell mounting the carbon cloth without microporous layer was also tested. The membrane electrode assembly was made of Nafion® 212 with Pt load 0.3/0.6 mg cm−2 (anode/cathode). The cell testing was run at 60 °C and 80 °C with fully humidified air (100%RH) and 80%RH hydrogen feedings. The assembly of gas diffusion layers and membrane with electrodes was compressed to 30% and 50% of its initial thickness. For each configuration polarization and power curves were recorded; in order to evaluate the role of different GDLs, AC impedance spectroscopy of the running cell was also performed.The higher compression ratio caused the worsening of cell performances, partially mitigated when the operating temperature was raised to 80 °C. The presence of the microporous layer onto the carbon cloth resulted extremely beneficial for the operations especially at high current density; moreover, it sensibly reduces the high frequency resistance of the overall assembly.  相似文献   

7.
The bipolar plate/current collector plays an important role in direct methanol fuel cells (DMFC). A current collector with different geometries could have a significant influence on cell performance. This paper presents fractal geometry application to current collector design in a direct methanol fuel cell (DMFC). This new current collector design is named CCFG (Current Collectors with Fractal Geometry). This research determined how to make a better free open design for the current collector on a printed circuit board based DMFC. The results show that both the free area ratio and total holes perimeter length on the bipolar plate affect the cell performance. The total number of holes on the perimeter presents greater effects than the free open ratio. The cell performance is more sensitive using a cathode current collector than the anode current collector.  相似文献   

8.
The effect of cathode gas diffusion media with microporous layers (MPLs) on direct methanol fuel cell (DMFC) performances is studied by combining electrochemical analysis and physicochemical investigation. The membrane electrode assemblies (MEAs) using MPL-modified cathode gas diffusion layers (GDLs, GDL-1) showed slightly better performances (117 mW cm−2) at 0.4 V and 70 °C than commercial GDL (SIGRACET® product version: GDL-35BC, SGL Co.) DMFC MEAs (110 mW cm−2). This might be due to high gas permeability, uniform pore distributions, and low water transport coefficient including methanol crossover. For GDL-1, the air permeability was 31.0 cm3 cm−2 s−1, while the one for SGL 35BC GDLs was 21.7 cm3 cm−2 s−1. Also, the GDL-1 in the pore-size distribution diagrams had distinct peaks due to more uniform distributions of macropores and micropores with smaller holes between aggregates of carbon particles compared to GDL-35 BC as confirmed by SEM images. Furthermore, the MEA using GDL-1 for the cathode had a lower water transfer coefficient compared to an MEA with a commercial 35 BC GDL.  相似文献   

9.
In this work we present an analysis of the mass transport in the anode side porous backing layer of a direct methanol fuel cell (DMFC). The effective transport coefficient of different backing layers at various compressions was measured and compared to two different literature models and a single particle random walk simulation which accounts for details of the geometrical fibre microstructure. Based on the measured values of the effective transport coefficient limiting current densities for diffusive transport were calculated taking into account geometric boundary conditions and anisotropic and inhomogeneous backing layer properties. Comparison with the measured values for the limiting current in fuel cell operation shows qualitative agreement. A systematic underestimation indicates that also other transport processes contribute significantly to the mass transfer at the used experimental setup.  相似文献   

10.
In this study, Nafion ionomer, as a kind of hyperdispersant, was added to polytetrafluoroethylene (PTFE) water dispersion system to suppress the size of PTFE particles in the ink of microporous layer (MPL). The agglomeration behavior of PTFE in ethanol and MPL were investigated by laser diffraction, dynamic light scattering (DLS) and metallurgical microscopes. The electronic resistance, pore size distribution, gas permeability and surface hydrophobic/hydrophilic properties were also characterized for prepared gas diffusion layers (GDLs). It was shown that PTFE water dispersion system suffered flocculating when dispersed in ethanol and this agglomeration behavior was reduced by employing Nafion ionomer. With the increase in the Nafion ionomer adopted in the MPL, not only the decreased hydrophobic property was shown in the MPL, but the decreased PTFE particle size was also achieved, which results in improved crosslink of carbon and pores themselves as well as the volume loss of pores in micron scale. The increased gas permeability and electronic conductivity of the GDL made the one employing the PTFE dispersion system with 1% Nafion content own its advantages as the cathode diffusion layer for a direct methanol fuel cell (DMFC) under near-ambient conditions.  相似文献   

11.
An integrated anode plate suitable for operating direct methanol fuel cells (DMFCs) at a high methanol feed concentration is reported. This anode structure which was made of flexible graphite materials not only provides dual role of liquid diffusion layer and flow field plate, but also serves as a methanol blocker by decreasing methanol flux to the interface of catalyst and membrane electrolyte. DMFCs incorporating this new anode structure exhibited a much higher open circuit voltage (OCV) (∼0.51 V) than that (∼0.42 V) of a conventional DMFC at a 10 M methanol feed. Cell polarization data show that this new anode structure significantly improves the cell performance at high methanol concentration scenarios (e.g. 12 M or above). Moreover, this new design greatly simplifies the anode structure and offers a promising approach in running passive-mode DMFC at high methanol feed concentrations.  相似文献   

12.
A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.  相似文献   

13.
Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (23 + 1) factorial experiments on a cell with anode area of 5 cm2 and excess oxidant O2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm3 min−1 and 353 K the peak power density was 2380 W m−2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m−2 under the same conditions.  相似文献   

14.
In this study, an analysis of the current distribution and oxygen diffusion in the Polymer Electrolyte Fuel Cell (PEFC) Cathode Catalyst Layer (CCL) has been carried out using Electrochemical Impedance Spectroscopy (EIS) measurements. Cathode EIS measurements obtained through a three-electrode configuration in the measurement system are compared with simulated EIS data from a previously validated numerical model, which subsequently allows the diagnostics of spatio-temporal electrochemical performance of the PEFC cathode. The results show that low frequency EIS measurements commonly related to mass transport limitations are attributed to the low oxygen equilibrium concentration in the CCL–Gas Diffusion Layer (GDL) interface and the low diffusivity of oxygen through the CCL. Once the electrochemical and diffusion mechanisms of the CCL are calculated from the EIS measurements, a further analysis of the current density and oxygen concentration distributions through the CCL thickness is carried out. The results show that high ionic resistance within the CCL electrolyte skews the current distribution towards the membrane interface. Therefore the same average current density has to be provided by few catalyst sites near the membrane. The increase in ionic resistance results in a poor catalyst utilization through the CCL thickness. The results also show that non-steady oxygen diffusion in the CCL allows equilibrium to be established between the equilibrium oxygen concentration supplied at the GDL boundary and the surface concentration of the oxygen within the CCL. Overall, the study newly demonstrates that the developed technique can be applied to estimate the factors that influence the nature of polarization curves and to reveal the effect of kinetic, ohmic and mass transport mechanisms on current distribution through the thickness of the CCL from experimental EIS measurements.  相似文献   

15.
Improving cell performance is the most demanded task in direct methanol fuel cell (DMFC) research, although this fuel cell has several intrinsic features like high energy density, moderate operating temperature and environmentally friendly operation. The catalyst layer (CL) is the site of electrochemical reactions directly affecting the cell performance. Accordingly, the structure and preparation of the CL are crucial in optimizing performance. In this study, a novel gradient catalyst layer (G-CL) for the anode of DMFC is developed and better performance is obtained compared with that of single catalyst layer (S-CL) anode. A G-CL anode is composed of an outer CL of covalent organic framework (COF) materials-mixed catalyst near the microporous layer (MPL) and a conventional inner CL near the membrane side. Different loading of Pt catalyst in the two layers. Therefore, in the G-CL structure, there existed a catalyst concentration gradient and porosity gradient. Anode electrodes are characterized morphologically and electrochemically and the performance of individual cells containing such G-CL designs is measured. The results indicate that incorporation of the appropriate amount of COF materials enables the outer CL not only to have a larger electrochemical surface area (ECSA) and expose more catalytic active sites but also holds a strong proton transfer ability to improve the methanol oxidation reaction (MOR) performance. Due to the presence of the inner layer of the CL formed the methanol gradient oxidation process. With the same platinum-ruthenium (Pt–Ru) catalyst loading, the 5 wt.% COF G-CL anode structure exhibited lower methanol crossover and higher power density (nearly 11% increment) compared with that of the S-CL anode with high methanol concentration (8 M) at 60 °C, showing the promising potential in further applications.  相似文献   

16.
An electrochemical impedance spectroscopy (EIS) technique was developed to characterize a direct methanol fuel cell (DMFC) under various operating conditions. A silver/silver chloride electrode was used as an external reference electrode to probe the anode and cathode during fuel cell operation and the results were compared to the conventional anode or cathode half-cell performance measurement using a hydrogen electrode as both the counter and reference electrode. The external reference was sensitive to the anode and the cathode as current was passed in a working DMFC. The impedance spectra and DMFC polarization curves were systematically investigated as a function of air and methanol flow rates, methanol concentration, temperature, and current density. Water flooding in the cathode was also examined.  相似文献   

17.
Novel anode gas diffusion layers (AGDLs) with both hydrophobic and hydrophilic pathways are created to enhance transfer of both methanol and CO2. Such AGDLs are created by perforating PTFE-treated AGDLs with laser, so that the original pores/pathways in the AGDL are hydrophobic and the laser perforations are hydrophilic, thus providing easy transport paths for both the liquid methanol solution and CO2. One of the novel AGDLs has increased the cell performance by 32% over the non-perforated AGDL. Results of electrochemical impedance spectroscopy (EIS) show that the main reason for the performance enhancement is due to the reduction in mass transfer resistance. Additionally, there is a reduction in charge transfer resistances due to the enhanced methanol transfer to the catalyst layer. The results of linear sweep voltammetry (LSV) show that the perforations increase methanol crossover, thus if perforation density of the AGDL is too high, the cell performances are lower than that of the virgin AGDL.  相似文献   

18.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   

19.
The influence of the anode gas diffusion layers (GDLs) on the performances of low-temperature DMFCs, and the properties of mass transport and CO2 removal on these anode GDLs were investigated. The membrane electrode assembly (MEA) based on the hydrophilic anode GDL, which consisted of the untreated carbon paper and hydrophilic anode micro-porous layer (comprised carbon black and 10 wt.% Nafion), showed the highest power density of 13.4 mW cm−2 at 30 °C and ambient pressure. The performances of the MEAs tended to decline with the increase of the PTFE content in the anode GDLs due to the difficulty of methanol transport. The contact angle measurements revealed that the wettabilities of the anode GDLs decreased as the increase of PTFE content. The wettabilities of the GDLs were improved by addition of hydrophilic Nafion ionomer to the GDLs. From the visualizations of CO2 gas bubbles dynamics on the anodes using a transparent cell, it was observed that uniform CO2 gas bubbles with smaller size formed on hydrophilic anode GDLs. And bubbles with larger size were not uniform over the hydrophobic anode GDLs. It was believed that adding PTFE to the anode GDL was not helpful for improving the CO2 gas transport in the anode GDL of the low-temperature DMFC.  相似文献   

20.
A transient two-phase mass transport model for liquid feed direct methanol fuel cells (DMFCs) is developed. With this model, various processes that affect the DMFC transient behaviors are numerically studied. The results show that the cell voltage exhibits an overshoot behavior in response to a sudden change in the current density. The magnitude of the overshoot depends on the magnitudes of the change in the cell current density and the initial current density. It is found that the dynamic change in the methanol permeation through the membrane to the cathode results in a strong cathode overpotential overshoot, which is believed to be the predominant factor that leads to the cell voltage overshoot. In contrast, the anode overpotential is relatively insensitive to the changes in the methanol concentration as well as CO surface coverage in the anode catalyst layer. Moreover, the effect of the double layer capacitance (DLC) on the cell dynamic behavior is studied and the results show that the DLC can smoothen the change in the cell voltage in response to a change in the cell current density. Furthermore, the dynamic response of mass transport to a change in the cell current density is found to be rather slow. In particular, it is shown that the slow response in the mass transport of methanol is one of the key factors that influence the cell dynamic operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号