首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study deals with evaluating the utility sector in terms of energetic and exergetic aspects. In this regard, energy and exergy utilization efficiencies in the Turkish utility sector over a wide range of period from 1990 to 2004 are assessed in this study. Energy and exergy analyses are performed for eight power plant modes, while they are based on the actual data over the period studied. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each power plants throughout the years, and overall energy and exergy efficiencies are compared for these power plants. The energy utilization efficiencies for the overall Turkish utility sector range from 32.64% to 45.69%, while the exergy utilization efficiencies vary from 32.20% to 46.81% in the analyzed years. Exergetic improvement potential for this sector are also determined to be 332 PJ in 2004. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies.  相似文献   

2.
《Energy Policy》2005,33(11):1461-1467
This paper presents an analysis of energy and exergy utilization in the agricultural sector of Saudi Arabia by considering the sectoral energy and exergy flows for a period of 12 years between 1990 and 2001. Energy and exergy analyses are conducted for its two essential devices, namely tractors and pumps, and hence the sectoral energy and exergy efficiencies are obtained for comparison for a period of 12 years. Two main energy sources are diesel for tractors and electricity for pumps in the sector. It is found that the overall exergy efficiencies in this sector are slightly less than the corresponding energy efficiencies, e.g. 74.19–69.20% for exergy efficiency and 74.94–74.60% for energy efficiency from 1990 to 2001. The present technique is proposed as a useful tool in sectoral analysis of energy and exergy utilization, developing energy policies and providing energy conservation measures.  相似文献   

3.
Energy and exergy utilization efficiencies in the Turkish transportation sector over the period from 2000 to 2020 are evaluated in this study. A comparison of the overall energy and exergy efficiencies of the Turkish transportation sector with the other countries is also presented. Energy and exergy analyses are performed for four transport modes, namely roadway, railway, airway and seaway, while they are based on the actual data for 2000 and projected data for 2020. Roadway appears to be the most efficient mode when compared with railway, air and seaway. It is projected that about 15% of total energy resources will be used in this sector during 2020. The energy utilization efficiencies for the Turkish transportation sector range from 23.71% in 2000 to 28.75% in 2020, while the exergy utilization efficiencies vary from 23.65% to 28.85% in the same years, respectively. Exergetic improvement potential for this sector is estimated to be 700 PJ in 2020, with an average increase rate of 4.5% annually between 2000 and 2020. Road transport and oil-fuelled combustion engines offer the principal scope for exergetic improvement in the coming decades. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral energy and exergy utilization to determine how efficiently energy and exergy are used in the sector studied. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies.  相似文献   

4.
In this paper, the end-use efficiencies of the different energy carriers and the overall energy efficiency in the Nigerian residential sector (NRS) were estimated using energy and exergy analysis. The energy and exergy flows were considered from 2006 to 2011. The overall energy efficiency ranges from 19.15% in 2006 to 20.19% in 2011 with a mean of (19.96±0.23)% while the overall exergy efficiency ranges from 4.34% in 2006 to 4.40% in 2011 with a mean of (4.31±0.059)%. The energy and exergy efficiency margin was 15.58% with a marginal improvement of 0.07% and 0.02%, respectively when compared with previous results. The contribution of the energy carriers to the total energy and exergy inputs were 1.45% and 1.43% for electricity, 1.95% and 3% for fossil fuel and 96.6% and 95.57% for bio-fuel. The result shows that approximately 65% of the residence use wood and biomass for domestic cooking and heating, and only a fraction of the residence have access to electricity. LPG was found to be the most efficient while kerosene, charcoal, wood and other biomass the least in this order. Electricity utilization exergy efficiency is affected by vapor-compression air conditioning application apart from low potential energy applications. In addition, this paper has suggested alternatives in the end-use application and has demonstrated the relevance of exergy analysis in enhancing sustainable energy policies and management and improved integration techniques.  相似文献   

5.
Exergy analysis of the energy use in Greece   总被引:1,自引:0,他引:1  
In this work, an analysis is being done on the concept of energy and exergy utilization and an application to the residential and industrial sector of Greece. The energy and exergy flows over the period from 1990 to 2004 were taken into consideration. This period was chosen based on the data reliability. The energy and exergy efficiencies are calculated for the residential and industrial sectors and compared to the findings of a previous study concerning the exergy efficiency of the Greek transport sector. The residential energy and exergy efficiencies for the year 2003 were 22.36% and 20.92%, respectively, whereas the industrial energy and exergy efficiencies for the same year were 53.72% and 51.34%, respectively. The analysis of energy and exergy utilization determines the efficiency of the economy as a whole. The results can play an important role in the establishment of efficiency standards of the energy use in various economy sectors. These standards could be utilized by energy policy makers.  相似文献   

6.
Exergy has been seen a key component for a sustainable society, and in the recent years exergy analysis has been widely used in the design, simulation and performance evaluation of thermal and thermo chemical systems. A particular thermo dynamical system is the society of a country, while the energy utilization of a country can be assessed using exergy analysis to gain insights into its efficiency and potential for improvements.Energy and exergy utilization efficiencies in the Turkish industrial sector (TIS) over the period from 1990 to 2003 are reviewed and evaluated in this study. Energy and exergy analyses are performed for eight industrial modes, namely iron–steel, chemical–petrochemical, petrochemical–feedstock, cement, fertilizer, sugar, non-metal industry, other industry, while in the analysis the actual data are used. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each subsector throughout the years studied, and these heating and overall energy and exergy efficiencies are compared for the eight subsectors. The chemical and petrochemical subsector, and the iron and steel subsector appear to be the most energy and exergy efficient sectors, respectively. The energy utilization efficiencies for the Turkish overall industrial sector range from 63.45% to 70.11%, while the exergy utilization efficiencies vary from 29.72% to 33.23% in the analyzed years. Exergetic improvement potential for this sector is also determined to be 681 PJ in 2003, with an average increase rate of 9.5% annually for the analyzed years. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies.  相似文献   

7.
Energy,exergy and economic analysis of industrial boilers   总被引:1,自引:0,他引:1  
In this paper, the useful concept of energy and exergy utilization is analyzed, and applied to the boiler system. Energy and exergy flows in a boiler have been shown in this paper. The energy and exergy efficiencies have been determined as well. In a boiler, the energy and exergy efficiencies are found to be 72.46% and 24.89%, respectively. A boiler energy and exergy efficiencies are compared with others work as well. It has been found that the combustion chamber is the major contributor for exergy destruction followed by heat exchanger of a boiler system. Furthermore, several energy saving measures such as use of variable speed drive in boiler's fan energy savings and heat recovery from flue gas are applied in reducing a boiler energy use. It has been found that the payback period is about 1 yr for heat recovery from a boiler flue gas. The payback period for using VSD with 19 kW motor found to be economically viable for energy savings in a boiler fan.  相似文献   

8.
This study aims at examining energy and exergy efficiencies in Turkish transportation sector. Unlike the previous studies, historical data is used to investigate the development of efficiencies of 17 years period from 1988 to 2004. The energy consumption values in tons-of-oil equivalent for eight transport modes of four transportation subsectors of the Turkish transportation sector, including hard coal, lignite, oil, and electricity for railways, oil for seaways and airways, and oil and natural gas for highways, are used. The weighted mean energy and exergy efficiencies are calculated for each mode of transport by multiplying weighting factors with efficiency values of that mode. They are then summed up to calculate the weighted mean overall efficiencies for a particular year. Although the energy and exergy efficiencies in Turkish transport sector are slightly improved from 1988 to 2004, the historical pattern is cyclic. The energy efficieny is found to range from 22.16% (2002) to 22.62% (1998 and 2004) with a mean of 22.42±0.14% and exergy efficiency to range from 22.39% (2002) to 22.85% (1998 and 2004) with a mean of 22.65±0.15%. Overall energy and exergy efficiencies of the transport sector consist mostly of energy and exergy efficiencies of the highways subsector in percentages varying from 81.5% in 2004 to 91.7% in 2002. The rest of them are consisted of other subsectors such as railways, seaways, and airways. The overall efficiency patterns are basically controlled by the fuel consumption in airways in spite of this subsector's consisting only a small fraction of total. The major reasons for this are that airways efficiencies and the rate of change in fuel consumption in airways are greater than those of the others. This study shows that airway transportation should be increased to improve the energy and exergy efficiencies of the Turkish transport sectors. However, it should also be noted that no innovations and other advances in transport technologies are included in the calculations. The future studies including such details will certainly help energy analysts and policy makers more than our study.  相似文献   

9.
Analysis and performance assessment of a solar driven hydrogen production plant running on an Mg–Cl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical Mg–Cl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.  相似文献   

10.
In this paper, a detailed review is presented to discuss biomass‐based hydrogen production systems and their applications. Some optimum hydrogen production and operating conditions are studied through a comprehensive sensitivity analysis on the hydrogen yield from steam biomass gasification. In addition, a hybrid system, which combines a biomass‐based hydrogen production system and a solid oxide fuel cell unit is considered for performance assessment. A comparative thermodynamic study also is undertaken to investigate various operational aspects through energy and exergy efficiencies. The results of this study show that there are various key parameters affecting the hydrogen production process and system performance. They also indicate that it is possible to increase the hydrogen yield from 70 to 107 g H2 per kg of sawdust wood. By studying the energy and exergy efficiencies, the performance assessment shows the potential to produce hydrogen from steam biomass gasification. The study further reveals a strong potential of this system as it utilizes steam biomass gasification for hydrogen production. To evaluate the system performance, the efficiencies are calculated at particular pressures, temperatures, current densities, and fuel utilization factors. It is found that there is a strong potential in the gasification temperature range 1023–1423 K to increase energy efficiency with a hydrogen yield from 45 to 55% and the exergy efficiency with hydrogen yield from 22 to 32%, respectively, whereas the exergy efficiency of electricity production decreases from 56 to 49.4%. Hydrogen production by steam sawdust gasification appears to be an ultimate option for hydrogen production based on the parametric studies and performance assessments that were carried out through energy and exergy efficiencies. Finally, the system integration is an attractive option for better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, an assessment of a renewable energy-based hybrid sulfur-bromine cycle for hydrogen fuel production and effective utilization is performed since the present era requires lots of hydrogen for fueling many systems. Hydrogen, produced by the hybrid sulfur-bromine cycle, is supplied to the combustion subsystems by blending with natural gas for residential use. Solar and wind energy sources are potentially considered as renewable energies for green hydrogen production. Also, a drying unit is included with an incineration subsystem. A desalination unit is also integrated to produce freshwater for the community. In this way, electricity, heat, and clean water required both for the community and the subsystems are supplied. The integrated system is then assessed in terms of energy and exergy efficiencies. Here, 0.233 kg/s of natural gas and hydrogen blend and 1.338 kg/s of biomass are provided to the system. The energy and exergy efficiencies of the overall system are determined to be 64.43% and 32.24%.  相似文献   

12.
This paper presents the analysis of sectoral energy and exergy utilization of Saudi Arabia by considering the energy and exergy flows for the 12 years between 1990 and 2001. Sectoral energy and exergy efficiencies are obtained for the subsectors and the devices used in each sector. Energy and exergy flow diagrams for Saudi Arabia are also presented, respectively, to illustrate the situation on how energy and exergy efficiencies vary in each sector. The residential sector appears to be the most energy efficient sector, and the industrial sector to be the most exergy efficient. It is believed that the current methodology is useful for analyzing sectoral energy and exergy utilization, which will help Saudi Arabia with energy savings through energy efficiency and/or energy conservation measures. It is also be helpful to establish standards to facilitate application in various sectors and processes for a sustainable energy planning. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The performance of a masonry animal feed solar cooker was evaluated in terms of energy and exergy. It is a low-cost cooker made of cement, bricks, glass covers and a mild steel absorber plate. The energy and exergy efficiencies of the animal feed solar cooker were experimentally evaluated. The energy output of this cooker ranges from 1.89 to 49.4 kJ, whereas the exergy output ranges from 0.11 to 2.72 kJ during the same time interval. The energy efficiency of the cooker varies between 1.12% and 29.78%, while the exergy efficiency varies between 0.07% and 1.52 % during the same period.  相似文献   

14.
This study analyzes a renewable energy‐driven innovative multigeneration system, in which wind and solar energy sources are utilized in an efficient way to generate several useful commodities such as hydrogen, oxygen, desalted water, space cooling, and space heating along with electricity. A 1‐km2 heliostat field is considered to concentrate the solar light onto a spectrum splitter, where the light spectrum is separated into two portions as reflected and transmitted to be used as the energy source in the concentrated solar power (CSP) and concentrated photovoltaics (CPV) receivers, respectively. As such, CSP and CPV systems are integrated. Wind energy is proposed for generating electricity (146 MW) or thermal energy (138 MW) to compensate the energy need of the multigeneration system when there is insufficient solar energy. In addition, multiple commodities, 46 MW of electricity, 12 m3/h of desalted water, and 69 MW of cooling, are generated using the Rankine cycle and the rejected heat from its condenser. Further, the heat generated on CPV cells is recovered for efficient photovoltaic conversion and utilized in the space heating (34 MW) and proton exchange membrane (PEM) electrolyzer (239 kg/h) for hydrogen production. The energy and exergy efficiencies of the overall system are calculated as 61.3% and 47.8%, respectively. The exergy destruction rates of the main components are presented to identify the potential improvements of the system. Finally, parametric studies are performed to analyze the effect of changing parameters on the exergy destruction rates, production rates, and efficiencies.  相似文献   

15.
This paper presents the thermodynamic analyses for a double flash-binary based integrated geothermal power plant which consists of two steam turbines and one expander in the organic Rankine cycle that uses ammonia as the working fluid and a lithium extraction sub system. The main useful outputs of the plant are electricity, heat for floor heating and lithium carbonate (Li2CO3). The aim of this study is to assess the overall system performance energetically and exergetically. Based on the results obtained from this study, the overall energy and exergy efficiencies are 58.41% and 66.63%, respectively. The present results also show that the Li2CO3 is produced at the rate of 9.52 × 10−3 kg/s. In addition, the effects of changing several important operating parameters and ambient conditions on the energy and exergy efficiencies and the performance of the subsystems are investigated.  相似文献   

16.
The energy and exergy utilizations in the U.S. manufacturing sector are analyzed by considering the energy and exergy flows for the year 2002. Detailed end-use models for fourteen intensive industries are established using scattered data from the Manufacturing Energy Consumption Survey (MECS). Since the MECS data exhibit many gaps, data from other sources are used, as well as a number of assumptions are made to complete the models. The methodology applied and the assumptions made are clearly described so that the methods can be readily modified to fit different needs. The end-use models provide a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the manufacturing sector are estimated as 63.5% and 38.8% respectively, while the embodied energy and exergy efficiencies are estimated as 52.7% and 32.1% respectively. The low efficiency values suggest that many opportunities for better industrial energy utilization still exist.  相似文献   

17.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The main objectives in carrying out the present study are twofold, namely to estimate the energy and exergy utilization efficiencies for the residential–commercial sector and to compare those of various countries with each other. In this regard, Turkey is given as an illustrative example with its latest figures in 2002 since the data related to the following years are still being processed. Total energy and exergy inputs in this year are calculated to be 3257.20 and 3212.42 PJ, respectively. Annual fuel consumptions in space heating, water heating and cooking activities as well as electrical energy uses by appliances are also determined. The energy and exergy utilization efficiency values for the Turkish residential–commercial sector are obtained to be 55.58% and 9.33%, respectively. Besides this, Turkey's overall energy and exergy utilization efficiencies are found to be 46.02% and 24.99%, respectively. The present study clearly indicates the necessity of the planned studies toward increasing exergy utilization efficiencies in the sector studied.  相似文献   

19.
In this paper, the energy, exergy, economic, environmental, steady-state, and process performance modeling/analysis of hybrid renewable energy (RE) based multigeneration system is presented. Beyond the design/performance analysis of an innovative hybrid RE system, this study is novel as it proposes a new methodology for determining the overall process energy and exergy efficiency of multigeneration systems. This novel method integrates EnergPLAN simulation program with EES and Matlab. It considers both the steady-state and the process performance of the modeled system on hourly timesteps in order to determine the overall efficiencies. Based on the proposed new method, it is observed that the overall process thermodynamic efficiencies of a hybrid renewable energy-based multigeneration system are different from its steady-state efficiencies. The overall energy and exergy efficiencies reduce from 81.01% and 52.52% (in steady-state condition) to 58.6% and 39.33% (when considering a one-year process performance). The integration of the hot water production with the multigeneration system enhanced the overall thermodynamic efficiencies in steady-state conditions. The Kalina system produces a total work output of 1171 kW with a thermal and exergy efficiency of 12.23% and 52% respectively while the wind turbine system produces 1297 kW of electricity in steady-state condition and it has the same thermal/exergy efficiency (72%). The economic analysis showed that the Levelized cost of electricity (LCOE) of the geothermal energy-based Kalina system is 0.0103 $/kWh. The greenhouse gas emission reduction analysis showed that the proposed system will save between 1,411,480 kg/yr and 3,518,760 kg/yr of greenhouse gases from being emitted into the atmosphere yearly. The multigeneration system designed in this study will produce electricity, hydrogen, hot water, cooling effect, and freshwater. Also, battery electric vehicle charging is integrated with process performance analysis of the multigeneration system.  相似文献   

20.
This study analyses sectoral energy and exergy utilization in Turkey between 1999 and 2000. Total energy and exergy utilization efficiencies are calculated to be 43.24 and 24.04% in 1999, and 44.91 and 24.78% in 2000, respectively. In order to calculate these efficiency values, Turkey is subgrouped into four main sectors, namely utility, industrial, transportation and commercial‐residential. The energy efficiency values are found to be 23.88, 30.10, 68.97 and 57.76% in 1999, and 23.71, 30.11, 68.81 and 57.05% in 2000 for transportation, utility, industrial and commercial‐residential sectors, respectively. Besides this, the exergy efficiency values are obtained to be 23.80, 30.28, 35.97 and 8.12% in 1999, and 23.65, 30.47, 35.51 and 8.02% in 2000 for the same order of sectors. The present study has clearly shown the necessity of the planned studies towards increasing exergy efficiencies in the sectors studied. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号